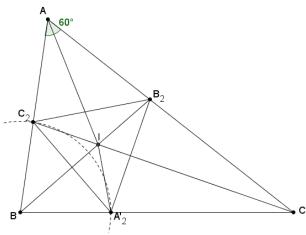
Problema 751

Sea ABC un triángulo con AB<AC.Sean B₂ C₂ los pies de las bisectrices de los ángulos B y C sobre los lados AC y AB. BC= BC₂ + CB₂ si y sólo si <A=60°.

Solution proposée par Philippe Fondanaiche



Si \angle BAC = 60°, alors BC = BC₂ + CB₂

On trace A'_2 sur BC tel que $BA'_2 = BC_2$.

Les triangles BIA'₂ et BIC₂ étant égaux, il en résulte que \angle BA'₂I = \angle BC₂I.

Par ailleurs comme \angle ACB = 120° - \angle ABC, on a \angle BCC₂ = 60° - \angle ABC/2.

D'où $\angle BA_2^{\prime}I = \angle BC_2I = 180^{\circ} - \angle ABC - \angle BCC_2 = 120^{\circ} - \angle ABC/2$ et $\angle CA_2^{\prime}I = 60^{\circ} + \angle ABC/2$.

Or $\angle CB_2I = \angle BAC + \angle ABC/2 = 60^\circ + \angle ABC/2$.

D'où $\angle CA_2'I = \angle CB_2I$. Les deux triangles CB_2I et $CA_2'I$ sont égaux et on a $CB_2 = CA_2'I$

D'où l'équation $BC = BC_2 + CB_2$.

Par la même occasion on vérifie que les trois segments IB2,IC2 et IA'2 sont égaux.

On a d'abord $IC_2 = IA'_2$. D'autre part $\angle C_2IB_2 = \angle BIC = 180^\circ - \angle IBC - \angle ICB = 180^\circ - (\angle ABC/2 + ABC/2)$

 $\angle ACB/2$) = 90° + $\angle BAC/2$ =120°. Les points A,B₂,I et C₂ sont cocycliques.

Comme $\angle IB_2C_2 = \angle IC_2B_2 = \angle BAC/2 = 30^\circ$, les cordes IB_2 et IC_2 sont égales.

Si BC = BC₂ + CB₂, alors \angle BAC = 60°

Soit A_2 sur BC tel que $BA_2 = BC_2$. Comme B_2 est sur la bissectrice issue de B, on a $B_2C_2 = B_2A_2$. Par ailleurs $CB_2 = BC - BC_2 = BC - BA_2 = CA_2$. C_2 étant sur la bissectrice issue de C, on a $C_2B_2 = C_2A_2$. Le triangle $B_2C_2A_2$ est donc équilatéral et son centre est le point I qui est à l'intersection des médiatrices des côtés B_2A_2 et C_2A_2 . On en déduit $\angle B_2IC_2 = 120^\circ$.

Comme \angle BC₂I = \angle BA'₂I = 180° - \angle CA'₂I = 180° - \angle CB₂I = \angle AB₂I, les points A,B₂,I et C₂ sont cocycliques et \angle BAC = 180° - \angle B₂IC₂ = 60°