Sobre un ángulo de 60º(VI)

Sea ABC un triángulo acutángulo y escaleno con AB<AC

Sean B2 y C2 los pies de la bisectriz de los ángulos B y C sobre los lados AC y AB respectivamente .[Actualizado el 16 de Noviembre por un despiste avisado por el profesor Peiró, a quien agradezco la gentileza]

Es (BB2/CC2)=(AB/AC) si y sólo si <A=60º.

Fondanaiche, P. (2015): Comunicación personal.

Sea <A=60°, <B= β , <C=120°- β .

El triángulo ABB₂ tiene de ángulos 60°, $\beta/2$, 120°-($\beta/2$)

Por el teorema del seno es
$$\frac{AB}{BB_2} = \frac{sen (120^{\circ} - {\beta/2})}{sen 60^{\circ}}$$

El triángulo ACC₂ tiene de ángulos 60° , 60° - $(\beta/2)$, 60° + $(\beta/2)$.

Por el mismo teorema es
$$\frac{AC}{CC_2} = \frac{sen (60^{\circ} + {\beta/2})}{sen 60^{\circ}}$$

Así lo que hemos de ver es que
$$sen\left(120^{\circ}-\left(\frac{\beta}{2}\right)\right)=sen\left(60^{\circ}+\left(\frac{\beta}{2}\right)\right)$$

Lo que es cierto por ser complementarios.

Supongamos ahora que es cierto que (BB2/CC2)=(AB/AC).

Así al ser α , β , γ los ángulos de ABC, los ángulos de

ABB₂ serán α , $\beta/2$, $\gamma+(\beta/2)$,

Yes
$$\frac{AB}{AB_2} = \frac{sen (\gamma + (\frac{\beta}{2}))}{sen \alpha}$$

Los ángulos del triángulo ACC₂ serán α , $\gamma/2$, $\beta+(\gamma/2)$

Así es
$$\frac{AC}{AC_2} = \frac{sen (\beta + (\frac{\gamma}{2}))}{sen \alpha}$$

Por ser iguales ambas expresiones, ha de ser o

1.- γ +(β /2)= β +(γ /2), es decir, β = γ , y sería isósceles, lo que hemos descartado en la hipótesis del enunciado.

2.- $(\gamma+(\beta/2))+(\beta+(\gamma/2))=180^\circ$, lo que implica $\gamma+\beta=120^\circ$, y por último $\alpha=60^\circ$, cqd.

Ricardo Barroso Campos.

Jubilado. Sevilla.