Problema 753

Sea \overrightarrow{ABC} un triángulo acutángulo y escaleno con $\overline{AB} < \overline{AC}$.

Sean B_2 i C_2 los pies de las bisectrices de los ángulos B y C, sobre los lados \overline{AC} y

B2

$$\overline{AB}$$
, respectivamente. Entonces, $\frac{\overline{BB}_2}{\overline{CC}_2} = \frac{\overline{AB}}{\overline{AC}}$ si sólo si $A = 60^\circ$.

Fondanaiche, P. (2015): Comunicación personal

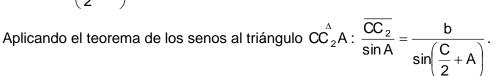
Solución: Ricard Peiró:

(⇒)

Supongamos
$$\frac{\overline{BB_2}}{\overline{CC_2}} = \frac{\overline{AB}}{\overline{AC}}$$
.

Aplicando el teorema de los senos al triángulo $B_2^{\Lambda}A$:

$$\frac{\overline{BB_2}}{\sin A} = \frac{c}{\sin\!\left(\frac{B}{2} + A\right)} \,.$$



Dividiendo ambas expresiones:
$$\frac{\overline{BB_2}}{\overline{CC_2}} = \frac{c}{b} \frac{sin\!\!\left(\frac{C}{2} + A\right)}{sin\!\!\left(\frac{B}{2} + A\right)}. \text{ Entonces:}$$

$$sin\left(\frac{C}{2}+A\right)=sin\left(\frac{B}{2}+A\right),\ B\neq C$$
. Entonces, $\frac{C}{2}+A=180^{o}-\left(\frac{B}{2}+A\right)$.

$$\frac{B+C}{2}=180^{o}-2A$$
 . $90^{o}-\frac{A}{2}=180^{o}-2A$. Resolviendo la ecuación: $A=60^{o}$.
 (\leftrightarrows)

Supongamos que $A = 60^{\circ}$.

Aplicando el teorema de los senos al triángulo
$$B_2^{\Delta}A$$
: $\frac{\overline{BB_2}}{\sin 60^{\circ}} = \frac{c}{\sin \left(\frac{B}{2} + 60^{\circ}\right)}$.

Aplicando el teorema de los senos al triángulo
$$CC_2^{\Delta}A$$
: $\frac{\overline{CC_2}}{\sin 60^{\circ}} = \frac{b}{\sin \left(\frac{C}{2} + 60^{\circ}\right)}$.

Dividiendo ambas expresiones:
$$\frac{\overline{BB_2}}{\overline{CC_2}} = \frac{c}{b} \frac{sin\left(\frac{C}{2} + 60^{\circ}\right)}{sin\left(\frac{B}{2} + 60^{\circ}\right)}.$$

Notemos que
$$\frac{C}{2} + 60^{\circ} + \frac{B}{2} + 60^{\circ} = 180^{\circ}$$
. Entonces, $sin\left(\frac{C}{2} + 60^{\circ}\right) = sin\left(\frac{B}{2} + 60^{\circ}\right)$.

Por tanto, $\frac{\overline{BB_2}}{\overline{CC_2}} = \frac{\overline{AB}}{\overline{AC}}$.