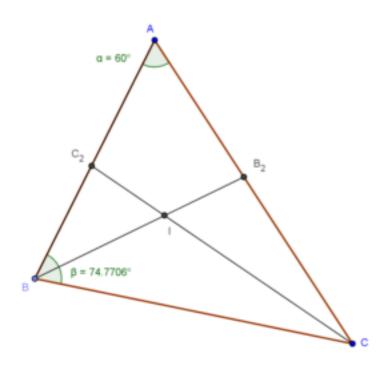
Problema 753.

Sobre un ángulo de 60º (VI)

Sea ABC un triángulo acutángulo y escaleno con AB < AC. Sean B_2 y C_2 los pies de las bisectrices de los ángulos B y C sobre los lados AC y AB respectivamente.

Es
$$\frac{BB_2}{CC_2} = \frac{AB}{AC}$$
 si y sólo si $< A = 60^\circ$.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Se tiene, en el triángulo BB_2A , por el teorema de los senos

$$\frac{BB_2}{\operatorname{sen} A} = \frac{AB}{\operatorname{sen} \left(\frac{B}{2} + C\right)}$$

y en el triángulo CC_2A :

$$\frac{CC_2}{\operatorname{sen} A} = \frac{AC}{\operatorname{sen} \left(\frac{C}{2} + B\right)}$$

Dividiéndolas entre sí se tiene

$$\frac{BB_2}{CC_2} = \frac{AB}{AC} \cdot \frac{\operatorname{sen}\left(\frac{C}{2} + B\right)}{\operatorname{sen}\left(\frac{B}{2} + C\right)}$$

Se trata de ver cuando se verifica

$$\operatorname{sen} \left(\frac{B}{2} + C \right) = \operatorname{sen} \left(\frac{C}{2} + B \right).$$

Tratándose de ángulos de triángulos la igualdad de los senos ocurre si y solo si los ángulos son iguales (que excluimos por significar la igualdad de B y C y ya no sería escaleno el triángulo ABC) o suplementarios y en este caso

$$\left(\frac{B}{2} + C\right) + \left(\frac{C}{2} + B\right) = 180$$

equivalente a $B + C = 120^{\circ}$ o lo que es igual $A = 60^{\circ}$.