Problema 754.-

Sobre un ángulo de 60º (VII)

Sea ABC un triángulo acutángulo y escaleno con AB<AC.

Sea O el circuncentro. Sea H el ortocentro. Sea B_3 el pie de la altura de B sobre el lado AC. Demostrar que <BAC= 60° si y sólo si la recta de Euler es bisectriz del ángulo CHB_3 .

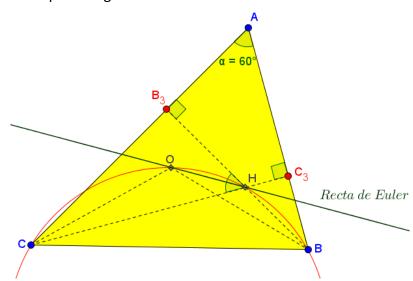
Fondanaiche, P. (2015): Comunicación personal.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

$$(\Rightarrow) < BAC = 60^{\circ}$$
.

Si el ángulo $\alpha = < BAC = 60^{\circ}$, entonces $< BOC = 120^{\circ}$. Como los puntos B_3 , H, C_3 y A son concíclicos, tenemos que $< B_3HC_3 = 120^{\circ}$, $< CHB_3 = 60^{\circ}$ y $< BHC = 120^{\circ}$. Entonces los puntos B, H, O y C también son concíclicos.

De esta manera, probar que la Recta de Euler es la bisectriz del ángulo $< CHB_3 = 60^\circ$ es equivalente a probar que el ángulo $< CHO = 30^\circ$.



Pero esto es cierto, sin más que observar las siguientes igualdades entre ángulos inscritos en la misma circunferencia.

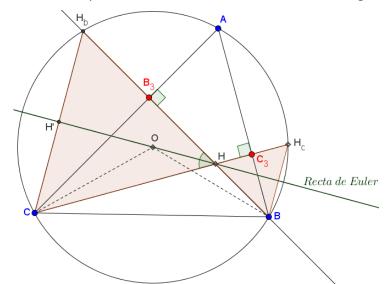
$$< CHO = < CBO = < BCO = 30^{\circ}.$$

Por tanto, la recta de Euler es bisectriz del ángulo CHB_3 . cqd

 (\Leftarrow) La recta de Euler es bisectriz del ángulo CHB_3 .

El ángulo $\angle CHB_3 = \angle BAC = \alpha$. Esto es fácil de ver al notar que los puntos B_3 , H, C_3 y A son concíclicos. Consideramos los puntos H_b y H_c , puntos simétricos de H respecto de H_c 0, respectivamente. Construimos los triángulos HCH_b H_c 1. Probaremos que ambos triángulos son equiláteros. Veámoslo para el primero de ellos.

Observamos que la recta de Euler al ser bisectriz del ángulo en H será también mediatriz del lado CH_b .



Por tanto, en el triángulo rectángulo $HH'H_b$ la suma de los ángulos agudos:

verificarán la relación:

$$\alpha + \frac{\alpha}{2} = 90^{\circ} \rightarrow \alpha = 60^{\circ} \quad cqd \quad \blacksquare$$