Problema 754

Sobre un ángulo de 60º(VII)

Sea ABC un triángulo con AB<AC

Sea O el circuncentro.

Sea H el ortocentro.

Sea B₃ el pie de la altura de B sobre el lados AC.

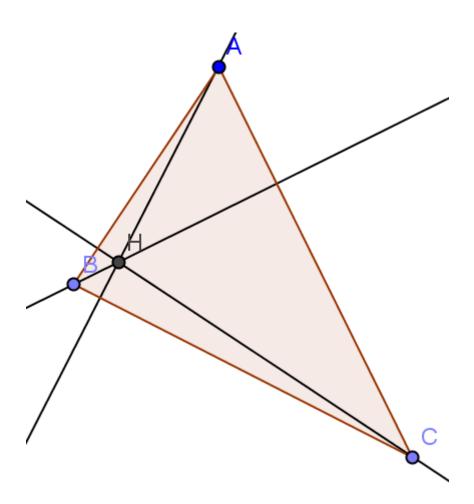
Demostrar que <BAC=60º si y sólo si la recta de Euler es bisectriz del ángulo CHB´3

Fondanaiche, P. (2015): Comunicación personal.

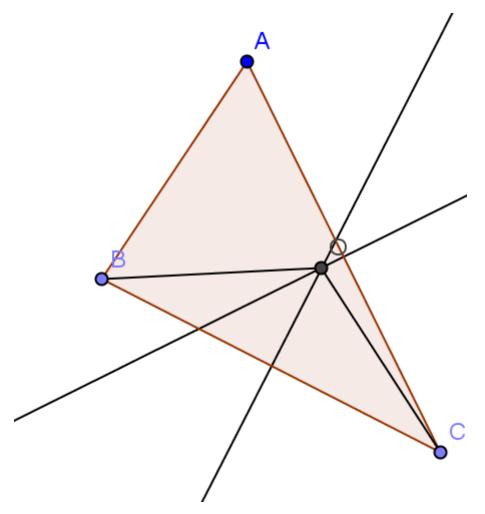
Solución del director.

Sea ABC de ángulos 60º, β, 120º-β.

Si <A=60º, el triángulo BHC es β -30º, 120º, 90º- β .



Y el circuncentro O da lugar al triángulo BOC, 30º 120º 30º



Así pues, el cuadrilátero BHOC es inscriptible, siendo:

<CHB₃ =60°, <CHO=<CBO=30°, por lo que obtenemos lo pedido.

Supongamos ahora que la recta de Euler es bisectriz de CHB₃.

Sea ABC α , β , γ .

Tenemos que <CHB $_3$ = α . Así es<CHO= $\alpha/2$

Además es <AHO=<AHB₃+< CHO= γ + α /2.

Por otra parte, <HAO= α - (90 $^{\circ}$ - β)-(90 $^{\circ}$ - β)=2 β + α -180 $^{\circ}$ = β - γ .

Luego <AOH= 180° -<AHO-<HAO= 180° - $(\gamma + \alpha/2)$ - $(\beta - \gamma) = \alpha/2 + \gamma$.

Con lo que el triángulo AHO es isósceles y AH=AO que es condición doble para se A=60º, cqd.

Ricardo Barroso Campos.

Jubilado.

Sevilla