Problema 754

Sobre un ángulo de 60°(VII)

Sea ABC un triángulo acutángulo y escaleno con AB<AC

Sea O el circuncentro. Sea H el ortocentro.

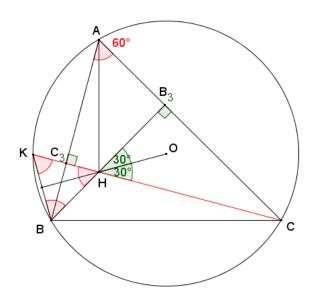
Sea B₃ el pie de la altura de B sobre el lados AC.

Demostrar que <BAC=60° si y sólo si la recta de Euler es bisectriz del ángulo CHB₃.

Solution proposée par Philippe Fondanaiche

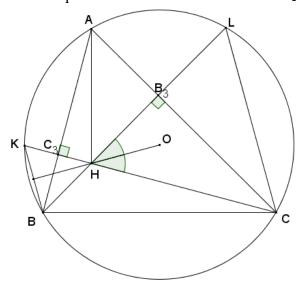
1^{ère} partie : l'angle en A vaut 60°

Soient C_3 la projection de C sur AB et K l'intersection de CC_3 avec le cercle circonscrit à ABC de centre O. On a $\angle BKC = \angle BAC = 60^\circ$, $\angle BHK = \angle CHI = 90^\circ - \angle ACH = 90^\circ - (90^\circ - \angle BAC) = \angle BAC = 60^\circ$, Le triangle BHK est donc équilatéral. H est donc à égale distance de B et de K. Il en est de même du point O. OH qui est la droite d'Euler du triangle ABC est la médiatrice de BK et c'est en même temps la bissectrice des angles $\angle BHK$ et $\angle CHB_3$.



 2^{eme} partie : OH est la bissectrice de l'angle \angle CHB₃.

Soit L le point d'intersection de la droite BB₃ avec le cercle circonscrit au triangle ABC.



On a les égalités d'angles \angle BKC = \angle BAC, \angle BHK = \angle CHL = 90°- \angle ACK = \angle BAC.

Le triangle BHK est donc isocèle de sommet B. Il en est de même du triangle CHL isocèle de sommet C.

Comme ABC est acutangle, le point O est intérieur au triangle ABC et se trouve soit à l'intérieur du triangle BHC₃ soit à l'intérieur du triangle CHB₃. Comme AB < AC, le point O est à l'intérieur du triangle CHB₃. On a OC = OL et \angle OHB₃ = \angle OHC. Les deux triangles OHL et OHC sont superposables et L est le symétrique de C par rapport à OH. Le triangle CHL est isocèle de sommet H. Il est donc équilatéral et \angle BAC= 60°