Problema 755. Sobre un ángulo de 60° (VIII).

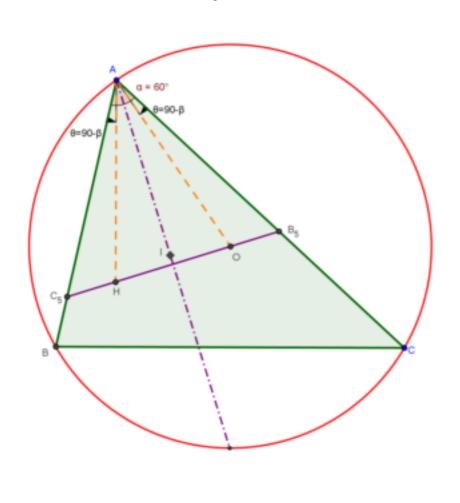
Sea ABC un triángulo acutángulo y escaleno con AB < AC. Sea O el circuncentro. Sea H el ortocentro.

Sean B_5 y C_5 respectivamente los puntos de intersección de la recta de Euler con AC y BC.

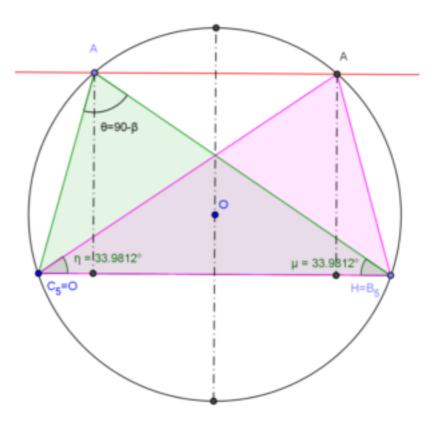
 $HB_5 = OC_5$ si y sólo si $\angle A = 60^\circ$.

Fondanaiche, P. (2015): Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Si $\not A = 60^\circ$, según el problema 747, AI es perpendicular a la recta de Euler: es mediatriz de OH; AH = AO, el triángulo AHO es isósceles y por ser H y O conjugados ortogonales, los triángulos AOB_5 y AHC_5 son congruentes (la simetría respecto de la bisectriz de A transforma uno en el otro). Por tanto $HB_5 = OC_5$.



Recíprocamente, si $HC_5 = OB_5$, los triángulos AHC_5 y AOB_5 tienen el ángulo en A, la altura h_A y el lado opuesto iguales. Por tanto, tienen igual área y son simétricos respecto de la altura común. (Tomando superpuestas las bases en el arco capaz del ángulo $\theta = 90 - \beta$ se traza una paralela a la base común, a una altura h_A de ésta. Corta a lo sumo a este arco en dos puntos: los dos vértices posibles para esa base de dos triángulos simétricos).

Se tiene por tanto AO = AH, o sea, A pertenece a la mediatriz de OH y según el 747 resulta que $\alpha = 60^{\circ}$.