Problema 757

Sobre un ángulo de 60º(IX)

Sea ABC un triángulo acutángulo y escaleno con AB<AC.

Sean B₅ y C₅ los puntos de intersección de la recta de Euler con AC y AB.

Sea D el punto medio del arco de la circunferencia circunscrita que no contiene a A.

Las rectas DB₅ y DC₅ son respectivamente mediatrices de CH y de BH si y sólo si <A=60º.

Fondanaiche, P. (2015): Comunicación personal.

Solución del director.

Sea <A= α =60°, <B= β , <C=120°- β .

Es:

<HBC=90°-<C=90°-(120°-β)=β-30°, <HCB=90°-<B=90°-β,

<CHB=180 $^{\circ}$ -<HBC-<HCB= 180 $^{\circ}$ - $(\beta$ -30 $^{\circ}$)- (90 $^{\circ}$ - β)=120 $^{\circ}$.

Por otra parte, es

<OBC=<OCB=30º, <BOC=120º

Por ello OHCB son concíclicos

<OHC=<OBC=30º, por lo que el triángulo CB₅H es isósceles 30º, 120º, 30º.

Así la recta de Euler construye un triángulo equilátero A B₅ C₅.

Es decir, los triángulos BC₅H y CB₅H son 30º 120º 30º.

 $<BHC=180-(90^{\circ}-\beta)-(90-(120^{\circ}-\beta))=120^{\circ}$

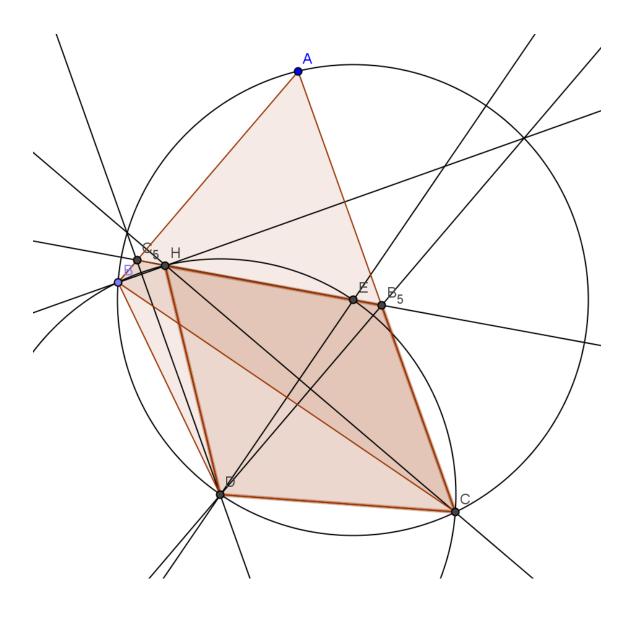
Por otra parte, B es el centro de la circunferencia BHC, por ser <BHC=120º, y ser <BDC =240º, y D estar en la mediatriz de BC

<HCD=<HCB+<DCB= 90° - β + 30° = 120° - β

Luego <DHC=120º-β. Igual para <DBH=<DHB= 30º+(90º-(120º-β))=β

. Así DHB5C y DHC5B son cometas, y sus diagonales son perpendiculares, y así DB_5 y DC_5 son respectivamente mediatrices de CH y de BH, c.q.d.

.



Supongamos ahora que es cierto que DB_5 y DC_5 son respectivamente mediatrices de CH y de BH.

<B $_5$ CH=90 $^\circ$ - α . B $_5$ D al ser mediatriz de CH lo es del triángulo B $_5$ CH con lo que <B $_5$ HC=90 $^\circ$ - α .

Así <CB₅H= 2α , y <AB₅H= 180° - 2α .

De manera análoga se obtiene que <AC₅H=180º-2 α .

Así en el triángulo AB $_5$ C $_5$, sus ángulos son: α , 180 $^\circ$ -2 α , 180 $^\circ$ -2 α

Debe ser pues α+($180^{\circ}-2\alpha$)+($180^{\circ}-2\alpha$)= $360^{\circ}-3\alpha=180^{\circ}$, y por último α= 60° , cqd.

Rcardo Barroso

Jubilado.

Sevilla.