Problema 757

Sea \overrightarrow{ABC} un triángulo escaleno y acutángulo con $\overline{AB} < \overline{AC}$.

Sean B_5 , C_5 los puntos de intersección de la recta de Euler con los lados \overline{AC} , \overline{BC} .

Sea D el punto medio del arco de la circunferencia circunscrita que no contiene A. Las rectas DB 5 y DC 5 son, respectivamente, mediatrices de CH y BH si y sólo si $A=60^{\circ}.$

Solución Ricard Peiró i Estruch:

Supongamos que rectas DB_5 i DC_5 son, respectivamente, mediatrices de \overline{CH} y \overline{BH} .

$$\angle ABH = 90^{\circ} - A$$
.

$$\angle$$
BHC₅ = \angle ABH = 90°-A.

$$\angle ACH = 90^{\circ}-A$$
.

$$\angle$$
CHB ₅ = \angle ABH = 90°-A.

$$\angle CHB = 180^{\circ}-A$$
.

Entonces, $2(90^{\circ}-A)+180^{\circ}-A=180^{\circ}$.

Resolviendo la ecuación, A = 60º.

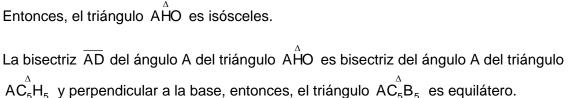
(⇐)

Supongamos que $A = 60^{\circ}$.

$$\angle C_5AH = \angle B_5AO = 90^{\circ}-B$$
.

$$\frac{\overline{AH}}{\cos 60^{\circ}} = \frac{b}{\sin B} = 2R.$$

Entonces, $\overline{AH} = \overline{AO} = R$



$$\angle ABH = 90^{\circ} - A = 30^{\circ}$$
.

$$\angle HC_5B = 180^{\circ}-60 = 120^{\circ}$$
.

Entonces, $\angle C_5HB = 30^\circ$.

Entonces, $\overline{BC_5} = \overline{HC_5}$.

$$\overline{OD} = \overline{DH}$$
.

$$\overline{OD} = \overline{OB}$$
.

Entonces, $\overline{BD} = \overline{DH}$.

Entonces, $\overline{DC_5}$ es mediatriz del segmento \overline{BH} .

Análogamente, \overline{DB}_5 es mediatriz del segmento \overline{CH} .

