Problema 757

Sobre un ángulo de 60°(IX)

Sea ABC un triángulo acutángulo y escaleno con AB<AC.

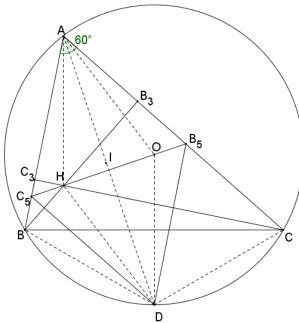
Sean B₅ y C₅ los puntos de intersección de la recta de Euler con AC y AB.

Sea D el punto medio del arco de la circunferencia circunscrita que no contiene a A.

Las rectas DB₅ y DC₅ son respectivamente mediatrices de CH y de BH si y sólo si <A=60°.

Solution proposée par Philippe Fondanaiche

Si l'angle \angle BAC = 60°, alors DB₅ et DC₅ sont les médiatrices de CH et de BH.



D'après les propriétés démontrées dans les problèmes $\underline{n^{\circ}747}$ et $\underline{n^{\circ}754}$, on sait que si l'angle \angle BAC est égal à 60°, alors :

- le parallèlogramme AHDO est un losange et les quatre points B,H,O et C sont sur un même cercle de centre D.On en déduit AH = AO = DB = DH = DC.
- la droite d'Euler OH est la bissectrice de l'angle CHB₃.

Il en résulte que :

$$\angle ABH = 90^{\circ} - \angle BAC = 30^{\circ} = \angle BHC_5 = \angle BHC_3/2 = 30^{\circ}$$

et \angle ACH = \angle CHB₅ = \angle CHB₃/2 = 30°

Conclusion: les triangles BDH et BC₅H sont isocèles et DC₅ est la médiatrice de BH.

De la même manière, les triangles CDH et CB₅H sont isocèles et DB₅ est la médiatrice de CH.

Si DB₅ et DC₅ sont les médiatrices de CH et de BH, alors angle \angle BAC = 60°.

On a les égalités d'angles \angle ABH = \angle BHC₅ = 90° - \angle BAC et \angle ACH = \angle CHB₅ = 90° - \angle BAC Il en résulte que : \angle BHC₅ = CHB₅ = C₅HC₃.

La droite d'Euler OH est alors la bissectrice de l'angle BHC₃ et d'après la réciproque du problème $n^{\circ}754$, l'angle \angle BAC est égal à 60° .