Problema 757

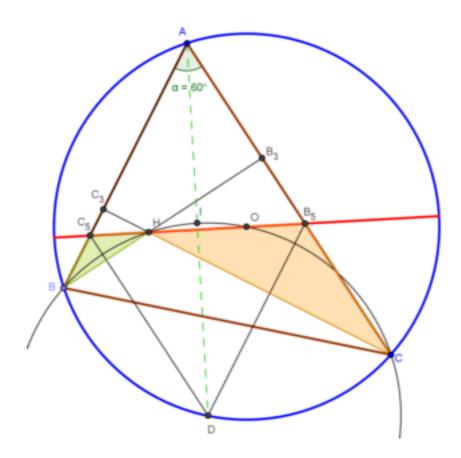
Sobre un ángulo de 60º(IX)

Sea ABC un triángulo acutángulo y escaleno con AB < AC.

Sean B_5 y C_5 los puntos de intersección de la recta de Euler con AC y AB. Sea D el punto medio del arco de la circunferencia circunscrita que no contiene a A.

Las rectas DB_5 y DC_5 son respectivamente mediatrices de CH y de BH si y sólo si $A=60^\circ$. Fondanaiche, P. (2015): Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Si DB_5 y DC_5 son mediatrices de CH y BH respectivamente, los triángulos BC_5H y HB_5C son isósceles y semejantes pues el ángulo en B del primero y el ángulo en C del segundo son iguales a BC_5H y BC_5 son isósceles y semejantes pues el ángulo en B del primero y el ángulo en C del segundo son iguales a BC_5H y BC_5 son isósceles y semejantes pues el ángulo en B del primero y el ángulo en C del segundo son iguales a BC_5H y BC_5 son isósceles y semejantes pues el ángulo en B del primero y el ángulo en C del segundo son iguales a BC_5H y BC_5 son isósceles y semejantes pues el ángulo en B del primero y el ángulo en C del segundo son iguales a B0 C1.

$$(90 - A) + (180 - A) + (90 - A) = 180.$$

De ahí se deduce $A = 60^{\circ}$.

Recíprocamente, si $A=60^{\circ}$, los puntos H y O (también I) están sobre el arco capaz de BC y amplitud 120° .

El centro de este arco es el punto D, por tanto DC = DH = DB, por tanto D está en la mediatriz de BH y en la de HC. Sean C_3 , B_3 respectivamente, los pies de las alturas desde C y B.

El ángulo $\angle BHC_3 = \angle A = 60$ (por ángulos de lados perpendiculares) y, según el problema 754 de esta revista, la recta de Euler es bisectriz de este ángulo, por tanto $\angle C_5BH = 30^\circ = \angle BHC_5$, que nos indica que el triángulo $\angle BC_5H$ es isósceles, con C_5 equidistando de los otros dos vértices, o de forma equivalente, con C_5 en la mediatriz de BH.

Análogamente con B₅ respecto de CH. Y con esto se concluye la demostración. ■