Problema 759

Sobre un ángulo de 60º(X)

Sea ABC un triángulo acutángulo y escaleno con AB<AC.

Sean C₄ y B₄ los puntos medios de los lados AB y AC

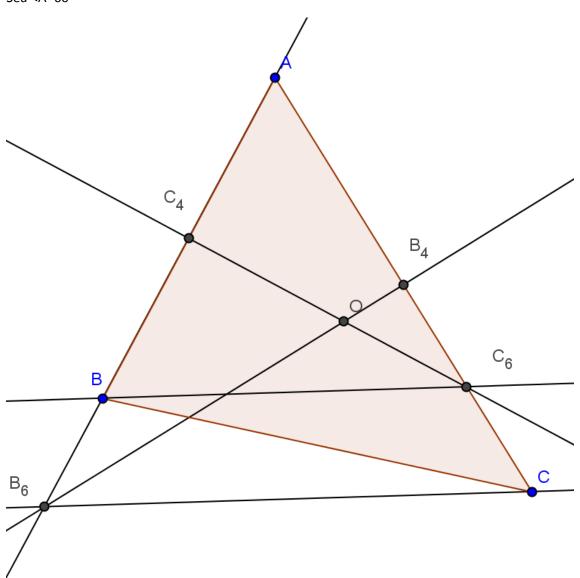
Sean B_6 y C_6 los puntos de intersección de OC_4 y OB_4 con AC y AB.

Las rectas BB_6 y CC_6 son paralelas de manera que la recta B_6 C_6 se corta con el lado BC en un punto interior de BC si y sólo si $A=60^\circ$.

Fondanaiche, P. (2015): Comunicación personal.

Solución del director

Sea <A=60º



Por construcción los triángulos BC_6A y B_6CA son isósceles en C_6 y B_6 respectivamente, por lo que al ser $A=60^\circ$, son equiláteros por lo que se tiene el paralelismo requerido. Al ser ABAC, la recta B_6C_6 se corta con el lado BC en un punto interior de BC.

Supongamos ahora las condiciones de ser paralelas las rectas $BB_6\ y\ CC_6$.

Sea <A $=\alpha$.

El triángulo BC₆A es isósceles por construcción en C₆

De esta manera sus ángulos son α , 180º-2 α , α

De igual manera el triángulo B_6CA también es isósceles por construcción siendo sus ángulos $180^{\circ}-2$ α , α , α .

Si son BB₆ y CC₆ paralelas habrá de ser 180º-2 α = α , de donde α =60º.

Al ser AB<AC, la recta B₆ C₆ se corta con el lado BC en un punto interior de BC.

Ricardo Barroso Campos.

Jubilado.

Sevilla.