Problema 759

Sea \overrightarrow{ABC} un triángulo acutángulo y escaleno con $\overline{AB} < \overline{AC}$.

Sean C_4 y B_4 los puntos medios de los lados \overline{AB} i \overline{AC} .

Sean B_6 y C_6 los puntos de intersección de OC_4 i $\overline{OB_4}$ con AC y AB,

Las rectas BB_6 y CC_6 son paralelas de manera que la recta B_6C_6 se corta con el lado \overline{BC} en un punto interior \overline{BC} de si y sólo si $A = 60^\circ$.

Fondanaiche, P. (2015): Comunicación personal.

Solución de Ricard Peiró i Estruch:

(⇐)

Supongamos que $A = 60^{\circ}$.

Entonces, los triángulos \overrightarrow{ABB}_6 , \overrightarrow{ACC}_6 son equiláteros.

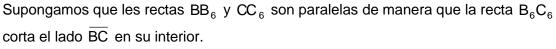
Por tanto, las rectas BB_6 y CC_6 son paralelas.

 C_6 es exterior al lado \overline{AB} ya que $B > A = 60^{\circ}$.

 $\overline{\rm BC}$ y ${\rm B_6C_6}$ son diagonales del trapecio isósceles y equilátero ${\rm BC_6CB_6}$.

Por tanto, la recta B_6C_6 corta el lado \overline{BC} en el su interior.

(⇒)



Sea
$$\alpha = \angle BCC_6 = \angle B_6BC$$
.

 B_4C_6 es mediatriz del lado \overline{AC} , entonces,

$$A = \angle ACC_6 = C + \alpha$$

 C_4B_6 es mediatriz del lado \overline{AB} , entonces,

$$A = \angle ABB_6 = B - \alpha .$$

Sumando ambas expresiones:

$$2A = B + C$$
.

2A = 180°-A. Resolviendo la ecuación:

$$A = 60^{\circ}$$
.

