Problema 759

Sobre un ángulo de 60°(X)

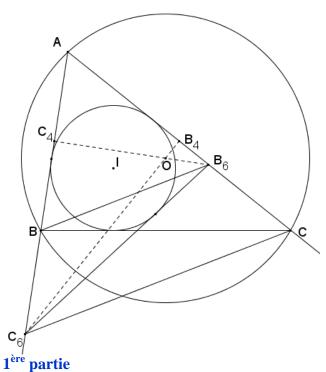
Sea ABC un triángulo acutángulo y escaleno con AB<AC.

Sean C₄ y B₄ los puntos medios de los lados AB y AC

Sean B₆ y C₆ los puntos de intersección de OC₄ y OB₄ con AC y AB.

Las rectas BB_6 y CC_6 son paralelas de manera que la recta B_6 C_6 se corta con el lado BC en un punto interior de BC si y sólo si $\angle A=60^\circ$.

Solution proposée par Philippe Fondanaiche



Si l'angle $\angle BAC = 60^{\circ}$, alors les droites BB_6 et CC_6 sont parallèles

Soient O le centre du cercle circonscrit au triangle ABC et I le centre du cercle inscrit. AI est la bissectrice de l'angle \angle BAC.Les points B₄ et C₄ étant les milieux des côtés AC et AB, les droites OB₄(ou encore B₄C₆) et OC₄ (ou encore C₄B₆) sont médiatrices des côtés AC et AB.

Il en résulte que $C_6A = C_6C$. Le triangle C_6AC est isocèle de sommet C_6 .

Comme $\angle C_6AC = \angle BAC = 60^\circ$, on a $\angle C_6CA = 60^\circ$ et le triangle ACC_6 est équilatéral. De la même façon le triangle ABB_6 est équilatéral.Les droites BB_6 et CC_6 sont parallèles.

2^{ème} partie

Les droites BB₆ et CC₆ sont parallèles, alors \angle BAC = 60°.

B₄C₆ étant médiatrice de AC, le triangle C₆AC est isocèle de sommet C₆ avec les relations:

 $C_6A = C_6C = AC/2cos(\angle BAC)$ et $\angle C_6AC = \angle C_6CA$.

De la même manière $B_6A = B_6B = AB/2\cos(\angle BAC)$ et $\angle B_6AB = \angle B_6BA$.

Donc AB / AC = AB₆ / AC₆ et les triangles ABC et AB₆C₆ sont semblables.

En conséquence $\angle AC_6B_6 = \angle ACB$.

Par hypothèse les droites BB_6 et CC_6 sont parallèles entre elles. Comme la droite B_6C_6 coupe le côté BC en son intérieur, l'égalité des angles $\angle AC_6B_6$ et $\angle ACB$ entraine que les quatre points BB_6CC_6 sont cocycliques et sont les sommets d'un trapèze isocèle.

D'où : \angle AC₆C = \angle ACC₆. Le triangle AC₆C est équilatéral comme d'ailleurs le triangle ABB₆. Dès lors \angle BAC = 60°