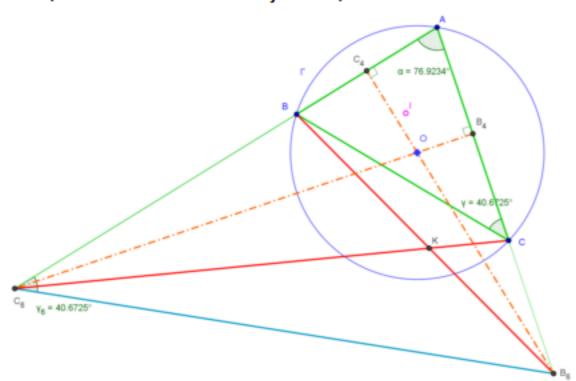
Problema 759.

Sobre un ángulo de 60º(X).

Sea ABC un triángulo acutángulo y escaleno con AB<AC. Sean C_4 y B_4 los puntos medios de los lados AB y AC. Sean B_6 y C_6 los puntos de intersección de OC_4 y OB_4 con AC y AB. Las rectas BB_6 y CC_6 son paralelas de manera que la recta B_6 C_6 se corta con el lado BC en un punto interior de BC si y sólo si A=60.

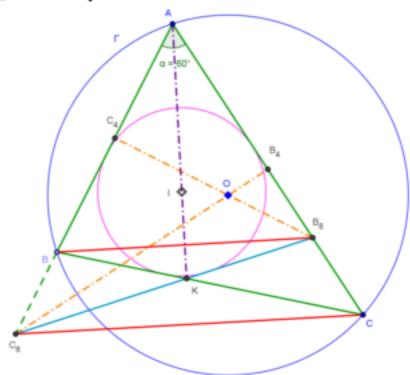
Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



De los triángulos rectángulos C_6B_4A y B_6C_4A se tienen $AC_6\cdot\cos A=\frac{b}{2}$ (1) y $AB_6\cdot\cos A=\frac{c}{2}$ (2). De ambas resulta por división

$$\frac{AC_6}{AB_6} = \frac{b}{c} \quad (3)$$

y por tanto los triángulos ABC y AB_6C_6 son semejantes.



.Si las rectas BB_6 y CC_6 son paralelas, entonces los triángulos ABB_6 y AC_6C son semejantes e isósceles, teniéndose entonces

$$\frac{AB}{AC_6} = \frac{AB_6}{AC} = \frac{BB_6}{C_6C}$$
, de donde

$$AB_6 \cdot AC_6 = b \cdot c$$
 (4)

Del producto de (3) y (4) obtenemos $AC_6 = b$, (y por tanto $AB_6 = c$) pero por (1), $b \cdot \cos A = \frac{b}{2}$ por tanto $A = 60^\circ$.

El triángulo AB_6C_6 se obtiene del triángulo ABC por una simetría respecto de la bisectriz de A. El punto de corte de B_6C_6 y BC ha de ser fijo en esta simetría: K, el pie de esta bisectriz. El incentro I también es fijo y por tanto esos dos triángulos tienen el mismo círculo inscrito, de lo que deducimos que B_6C_6 ha de ser tangente al mismo.

.Recíprocamente, si $A=60^\circ$, por (1) y (2), $AC_6=b=AC$, y $AB_6=c=AB$.

Los triángulos ABB_6 y AC_6C son isósceles y por tanto BB_6 y C_6C son paralelas.

Los triángulos semejantes ABC y AC_6B_6 son isométricos: pueden obtenerse por simetría respecto de la bisectriz de A ... etc. como antes.