Problema 760

Sobre un ángulo de 60°(XI)

Sea ABC un triángulo acutángulo y escaleno con AB<AC.

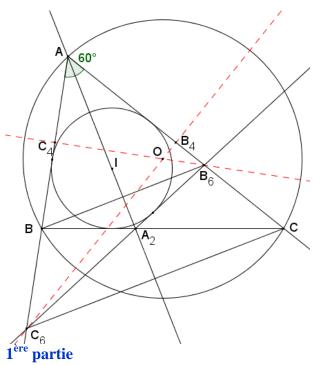
Sean C₄ y B₄ los puntos medios de los lados AB y AC

Sean B₆ y C₆ los puntos de intersección de OC₄ y OB₄ con AC y AB.

Sea A₂ el pie de la bisectriz de A sobre el lado BC.

Los puntos B_6 , C_6 y A_2 están alineados si y sólo si $< A=60^\circ$.

Solution proposée par Philippe Fondanaiche



Si l'angle $\angle BAC = 60^{\circ}$, alors les points A_6, B_6 et A_2 sont alignés.

Soit I le centre du cercle inscrit au triangle ABC. AI est la bissectrice de l'angle \angle BAC. Soient B₄ et C₄ les milieux des côtés AC et AB.

 B_6C_4 passant par le centre O du cercle circonscrit au triangle ABC est médiatrice du côté AB.II en résulte que $B_6A = B_6B$. Le triangle B_6AB est isocèle de sommet B_6 . On a donc $\angle B_6AB = \angle BAC = 60^\circ$ et le triangle ABB_6 est équilatéral. De la même façon le triangle ACC_6 est équilatéral. Le trapèze BB_6CC_6 est isocèle et les diagonales BC et B_6C_6 symétriques par rapport à la bissectrice AI de l'angle $\angle BAC$ se coupent en un point de cette bissectrice. Ce point n'est autre que le pied A_2 de AI sur le côté BC.

2^{ème} partie

Les points A_6 , B_6 et A_2 sont alignés, alors $\angle BAC = 60^\circ$.

 B_6C_4 étant médiatrice de AB, il en résulte que le triangle B_6AB est isocèle de sommet B_6 avec $B_6A = B_6B = AB/2cos(\angle BAC)$ et $\angle B_6AB = \angle B_6BA$.

De la même manière $C_6A = C_6C = AC/2\cos(\angle BAC)$ et $\angle C_6AC = \angle C_6CA$.

Donc $AB / AC = AB_6 / AC_6$. Les triangles ABC et AB_6C_6 qui ont un angle commun sont semblables et $\angle AB_6C_6 = \angle ABC$.

Par hypothèse les points A_6, B_6 et A_2 sont alignés. Les deux triangles ABA_2 et AB_6A_2 qui ont un côté AA_2 commun et deux angles égaux ($\angle BAA_2 = \angle B_6AA_2$ et $\angle AB_6A_2 = \angle AB_6C_6 = \angle ABC = \angle ABA_2$) sont isométriques. D'où $BA = B_6A$. Le triangle ABB_6 est donc équilatéral et $\angle BAC = 60^\circ$.