Problema 760.

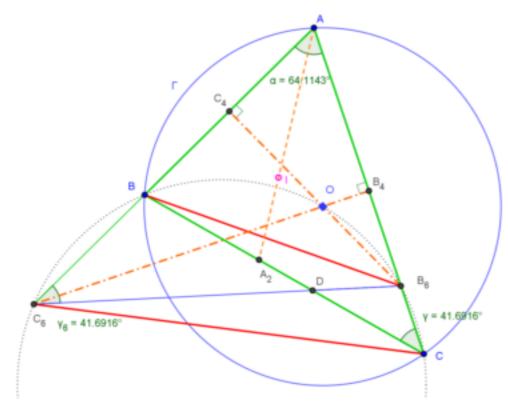
Sobre un ángulo de 60º (XI).

Sea ABC un triángulo acutángulo y escaleno con AB<AC. Sean C₄ y B₄ los puntos medios de los lados AB y AC. Sean B₆ y C₆ los puntos de intersección de OC_4 y OB_4 con AC y AB.

Sea A₂ el pie de la bisectriz de A sobre el lado BC.

Los puntos B₆, C₆ y A₂ están alineados si y sólo si <A=60º.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Según vimos en el problema 759, los triángulos AB_6C_6 y ABC son semejantes. La razón de semejanza es $2 \cdot \cos A$.

.si
$$A = 60^{\circ}$$
, $AC_6 = b = AC_Y AB_6 = c = AB$.

Α.

 ABB_6 y AC_6C son equiláteros; los lados BB_6 y C_6C son paralelos. Según el mencionado problema se cortan en el pie A_2 de la bisectriz de A.

Sea D el punto común a BC y a C_6B_6 en el interior de ambos segmentos para poder ser el pie de la bisectriz interior de

Aplicando el teorema de Menelao en AC_6B_6 con BC como transversal tenemos:

$$\frac{DB_6}{DC_6} = \frac{CB_6}{AC} \cdot \frac{AB}{BC_6} = \frac{b - AB_6}{b} \cdot \frac{c}{AC_6 - c} = \frac{c}{b} \cdot \frac{2b \cdot \cos A - c}{b - 2c \cdot \cos A} \tag{1}$$

.Si C_6 , B_6 y $A_2 = D$ están alineados, entonces por el teorema de la bisectriz, la razón (1) es la razón de los lados del ángulo A,

$$\frac{DB_6}{DC_6} = \frac{AB_6}{AC_6} = \frac{c}{b'}$$
 por tanto, $2b \cdot \cos A - c = b - 2c \cdot \cos A$ de donde se concluye que $A = 60^\circ$.