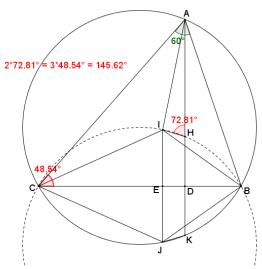
Problema n° 762

Sobre un ángulo de 60°(XII)

Sea ABC un triángulo acutángulo y escaleno con AB<AC.

Sea H el ortocentro, e I el incentro, 2 < AHI= 3 < ACB si y sólo si <A=60°

Solution proposée par Philippe Fondanaiche



Hypothèse : $\angle BAC = 60^{\circ}$.

Soient D,K ,E,J pris dans cet ordre les points d'intersection de la droite AH et de la perpendiculaire issue de I à BC respectivement avec ce côté BC et le petit arc BC du cercle circonscrit à ABC (voir figure supra)

On a les relations d'angles \angle BIC = 180° – \angle CBI – \angle BCI = 180° – (\angle ABC + \angle ACB)/2 = 90° + \angle BAC/2 = 120° .

Comme ABJC est inscriptible, on a par ailleurs \angle BJC = $180^{\circ} - \angle$ BAC = 120° .

IJ étant perpendiculaire à BC, BICJ est un « cerf-volant » et le triangle BIJ est isocèle de sommet B. D'où \angle CBJ = \angle CBI = \angle ABC /2.

D'après une propriété bien connue de l'orthocentre, le point K est symétrique de H par rapport à D.Donc HIJK est un trapèze isocèle et \angle AHI = $180^{\circ} - \angle$ IHK = $180^{\circ} - \angle$ AKJ . Comme ABJK est un quadrilatère inscriptible, on a \angle ABJ = $180^{\circ} - \angle$ AKJ.

D'où $\angle AHI = \angle ABJ = \angle ABC + \angle CBJ = 3 \angle ABC/2$.

Il en résulte $2 \angle AHI = 3 \angle ABC$.

Cqfd.

Réciproque : $2 \angle AHI = 3 \angle ABC$

On pose $\alpha = \angle BAC/2$ et $\beta = \angle ABC/2$. D'où $\angle AHI = 3\beta/2$.

On a les relations d'angles :

 $\angle BIH = 180^{\circ} - \angle IBH - \angle IHB$,

 $\angle IBH = \angle ABH - \angle ABI = 90^{\circ} - \alpha - \beta/2$,

 $\angle IHB = \angle AHB - \angle AHI = \alpha + \beta - 3\beta/2 = \alpha - \beta/2$

 \angle ICH = \angle ACI - \angle ACH = 90° - $\alpha/2$ - $\beta/2$ - $(90^{\circ}$ - $\alpha)$ = $(\alpha - \beta)/2$.

D'où \angle BIH = 90° + β . Comme \angle BCH = 90° - β , les quatre points B,I,H,C sont cocyliques. D'où l'équation \angle IBH = \angle ICH, c'est à dire 90° - α - β /2 = (α - β)/2, qui donne α = 60° Cqfd