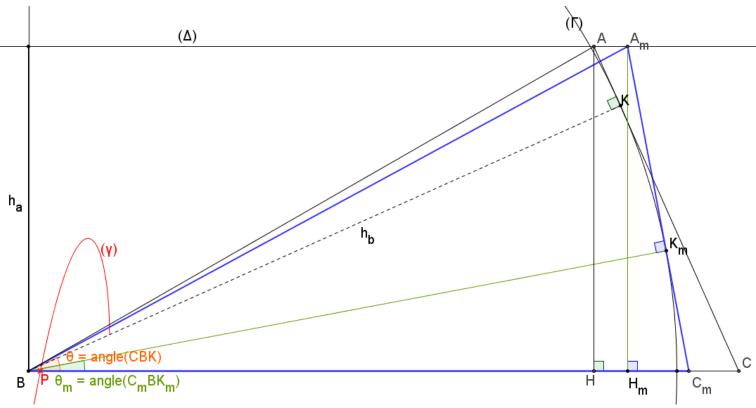
Problema 763

Hallar el perímetro mínimo de un triángulo cualquiera (abc) conocidas las alturas correspondientes a los lados a y b. Sánchez, J. (2016): Comunicación personal.

Solution proposée par Philippe Fondanaiche



Par hypothèse on connaît les hauteurs $AH = h_a$ et $BK = h_b$ d'un triangle ABC. Sans perte de généralité on suppose $h_b \ge h_a$.

Pour construire un triangle ABC qui admet deux hauteurs de longueurs h_a et h_b , il suffit de tracer une droite (Δ) parallèle à l'axe des x et d'ordonnée h_a puis le cercle de centre B et de rayon h_b . Soit K un point quelconque de l'arc (Γ) de ce cercle compris entre l'axe des abscisses et la droite (Δ). La tangente en K à (Γ) coupe respectivement l'axe des abscisses et la droite (Δ) aux points A et C qui sont les deux sommets autres que B du triangle ABC.

Si l'on désigne par θ l'angle \angle CBK, le périmètre du triangle ABC est une fonction $p(\theta)$ de θ , h_a et h_b .

En effet
$$p = BC + AC + AB$$
 avec:

$$BC = h_b/\cos(\theta)$$

$$AC = AH/cos(\theta) = h_a/cos(\theta)$$

$$AB^2 = AH^2 + BH^2 = AH^2 + (AC - CH)^2 = AH^2 + AC^2 + CH^2 - 2AC.CH \text{ avec } CH = AC.\sin(\theta)$$

D'où AB =
$$\frac{\sqrt{h_a^2 + h_b^2 - 2h_a h_b \sin(\theta)}}{\cos(\theta)}$$

Il en résulte
$$p(\theta) = \frac{h_a + h_b + \sqrt{h_a^2 + h_b^2 - 2h_a h_b \sin(\theta)}}{\cos(\theta)}$$

Une condition nécessaire pour que $p(\theta)$ soit un extremum est $dp/d\theta = 0$

Quand K est sur l'axe des abscisses, le périmètre du triangle ABC est égal à $p_1 = h_a + h_b + \sqrt{h_a^2 + h_b^2}$ et quand K est sur la droite (Δ), il est égal à $p_2 = h_b$. (1 + $\sqrt{h_a^2 + h_b^2}$)

$$\frac{h_a + h_b}{\sqrt{h_b^2 - h_a^2}})$$

Quel que soit θ tel que $0 \le \theta \le \arcsin(h_a/h_b)$, comme $h_a \le b_b$, on peut vérifier que lorsque K parcourt l'arc de cercle (Γ) :

$$\frac{h_a + h_b + \sqrt{h_a^2 + h_b^2 - 2h_a h_b sin(\theta)}}{\cos(\theta)} \le p_1 = h_a + h_b + \sqrt{h_a^2 + h_b^2}$$

et

$$\frac{h_a + h_b + \sqrt{h_a^2 + h_b^2 - 2h_a h_b sin(\theta)}}{\cos(\theta)} \le p_2 = h_b. (1 + \frac{h_a + h_b}{\sqrt{h_b^2 - h_a^2}})$$

En calculant la dérivée de p par rapport à θ , on a l'équation suivante dont l'inconnue est $\sin(\theta)$:

$$f(\theta) = -h_a h_b (1 + \sin^2(\theta)) + \sin(\theta) \cdot \left[h_a^2 + h_b^2 + (h_a + h_b) \cdot \sqrt{h_a^2 + h_b^2 - 2h_a h_b \sin(\theta)} \right] = 0$$

En posant
$$x = \sin(\theta)$$
, on obtient la fonction $f(x) = -(1 + x^2) + x(h_a^2 + h_b^2 + (h_a + h_b))\sqrt{h_a^2 + h_b^2 - 2h_a h_b x} = 0$.

Le tracé de la courbe (γ) représentative de f(x)/h_ah_b est donné dans la figure Geogebra ci-dessus.

Pour $0 \le x \le h_a/h_b$, soit $0 \le \theta \le \arcsin(h_a/h_b)$, cette courbe (γ) a un point d'intersection unique P avec l'axe des abscisses. La longueur du segment BP est alors la mesure du sinus de l'angle θ_m correspondant à un extremum du périmètre p.

Comme $p(\theta) \le p_1$ et $p(\theta) \le p_2$, il en résulte que θ_m donne bien le minimum de $p(\theta)$.

La construction du point K_m et celle du triangle A_mBC_m avec le logiciel Geogebra sont alors immédiates.

Application numérique

 $h_a = 5$ et $h_b = 10$. On obtient les mesures suivantes des côtés du triangle A_mBC_m en bleu:

 $A_mB = 10.5017547574...$, $BC_m = 10.1752425663..$ et $C_mA_m = 5.0876212831...$ soit $p_m = 25.7646186168...$