Problema n° 764

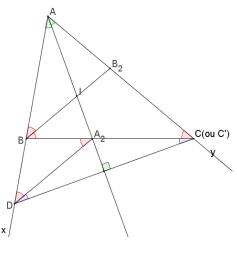
Sobre un ángulo de 60°(XIII)

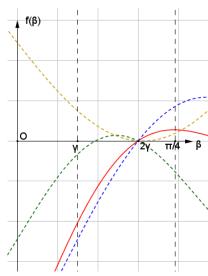
Sea ABC un triángulo acutángulo y escaleno con AB<AC.

Sean A₂ y B₂ los pies de las bisectrices de A y B.

Conociendo que $AB + BA_2 = AB_2 + BB_2$, es $< ABC = 80^\circ$, si y sólo si $< A=60^\circ$.

Solution proposée par Philippe Fondanaiche





On démontre d'abord la propriété suivante :

Lemme: dans un triangle ABC acutangle et scalène avec AB < AC qui a pour bissectrices AA₂ et BB₂, on a l'égalité AB + BA₂= AB₂+BB₂ si et seulement si l'angle en B est le double de l'angle en C, c'est à dire \angle ABC = $2 \angle$ ACB.

Démonstration:

1er cas :par hypothèse \angle ABC = 2 \angle ACB.

On a $B_2BC = B_2CB$. Le triangle BB_2C est isocèle de sommet B_2 . Il en résulte $AB_2 + BB_2 = AC$.

La perpendiculaire issue de C à la bissectrice AA_2 coupe la demi-droite Ax en un point D situé sur la droite AX en dehors du côté AB. Les triangles ACD et A_2CD sont isocèles de sommets A et A_2 .

D'où : \angle ACD = \angle ADC et \angle A₂CD = \angle A₂DC. On obtient alors \angle BDA₂ = \angle ACA₂ = \angle B₂BA₂. La droite (AD₂) est donc parallèle à la droite (B₂B). D'où \angle BA₂D = \angle B₂BA₂ = \angle BDA₂. Le triangle BDA₂ est isocèle de sommet B. D'où AB₂+BB₂ = AC = AD = AB + BD = AB + BA₂. Cqfd

2ème cas : par hypothèse $AB + BA_2 = AB_2 + BB_2$

Soient les angles $2\beta = \angle$ ABC et $2\gamma = \angle$ ACB avec par hypothèse $\beta \le 45$ ° et $\beta \ge \gamma$. D'où \angle BAA₂ = 90° – β – γ . La loi des sinus appliquée aux triangles ABA₂ et ABB₂ donne les dimensions des segments BA₂, AB₂ et BB₂ en fonction de AB, β et γ , à savoir:

 $BB_2 = \sin(2\beta + 2\gamma).AB/\sin(\beta + 2\gamma), \ AB_2 = \sin(\beta)/\sin(\beta + 2\gamma) \ \text{et } BA_2 = \cos(\beta + \gamma).AB/\cos(\beta - \gamma) \ \text{avec } \beta + 2\gamma \ \text{toujours} < 180^\circ.$ Comme par hypothèse $AB + BA2 = AB2 + BB_2$, on obtient une relation entre les angles β et γ de la forme: $[\sin(2\beta + 2\gamma) + \sin(\beta)].\cos(\beta - \gamma) = [\cos(\beta + \gamma) + \cos(\beta - \gamma)].\sin(\beta + 2\gamma)$ qui peut encore s'écrire grâce à la formule trigonométrique $2\sin(u).\cos(v) = \sin(u + v) + \sin(u - v)$:

$$f(\beta) = \left[\sin(3\beta + \gamma) - \sin(2\beta + 3\gamma)\right] + \left[\sin(\beta + 3\gamma) - \sin(2\beta + \gamma)\right] + \left[\sin(2\beta - \gamma) - \sin(3\gamma)\right] = 0$$

Les trois expressions contenues entre crochets [..] s'annulent pour $\beta = 2\gamma$, c'est à dire quand l'angle en B est le double de l'angle en C et on vérifie qu'avec les hypothèses $\gamma < \beta \le 45$ °, la courbe représentative de $f(\beta)$ en rouge comme celles des fonctions définies entre crochets ne s'annulent que pour $\beta = 2\gamma$. Cqfd

L'application du lemme permet de conclure rapidement:

1er cas: $AB + BA_2 = AB_2 + BB_2$ et $\angle BAC = 60^\circ$.

Il en résulte $2\beta + 2\gamma = 120^{\circ}$. Comme $\beta = 2\gamma$, on en déduit \angle ABC = $2\beta = 80^{\circ}$

2ème cas : $AB + BA_2 = AB_2 + BB_2$ et $\angle ABC = 80^{\circ}$

Comme $\gamma = \beta/2$, on en déduit $\gamma = 40^{\circ}$ et $\angle BAC = 180^{\circ} - 80^{\circ} - 40^{\circ} = 60^{\circ}$.

Nota important: Si on admet que le triangle ABC est obtusangle, alors si \angle ABC = 120°, la propriété AB + BA₂= AB₂+BB₂ est vraie quelles que soient les valeurs des angles en A et en C.