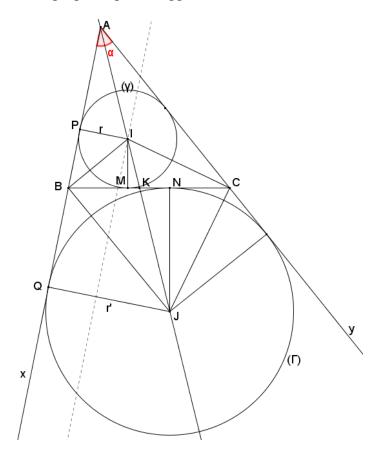
Problema 765

Calcular y dibujar un triángulo cualquiera (abc) conocidos solamente su perímetro, área y el ángulo A. Sánchez, J. (2016): Comunicación personal.

Solution proposée par Philippe Fondanaiche



Soit un triangle ABC dont l'angle en A vaut α , le périmètre est égal à p et l'aire est égale à S. On désigne par a,b,c les longueurs des côtés BC,CA et AB, par r le rayon du cercle inscrit (γ) et par r' le rayon du cercle exinscrit (γ) dans le secteur de l'angle en A.

On a p = a + b + c.

Soient:

M et P les points de contact du cercle (γ) avec les côtés BC et AB,

N et Q les points de contact du cercle (Γ) avec BC et la droite qui porte le côté AB.

On sait que les points M et N sont symétriques par rapport au milieu du côté BC.

Il en résulte que BM = CN et AQ = AP + PB + BQ = AP + BM + CM = p/2

Par ailleurs on a la deuxième relation r*p = 2S

Connaissant α, p et S, la construction du triangle ABC se fait de la manière suivante:

- 1) On trace deux droites Ax et Ay qui font un angle α puis la bissectrice intérieure (Δ) de l'angle α .
- 2) On calcule r = 2S/p
- 3) On trace la parallèle à la droite Ax à une distance r. Elle coupe la bissectrice (Δ) au point I centre du cercle inscrit (γ). On trace (γ)
- 4) Sur la droite (Ax) on trace le point Q tel que AQ = p/2. La perpendiculaire en Q à la droite (Ax) coupe (Δ) au points J centre du cercle exinscrit (Γ) dans le secteur de l'angle en A. JQ donne le rayon r' de ce cercle. On trace (Γ).
- 5) On trace le point K sur le segment IJ tel que KI/KJ = r/r' par application du théorème de Thalès.
- 6) On trace la tangente passant par K commune aux deux cercles (γ) et (Γ) qui coupe respectivement la droite (Ax) en B et la droite (Ay) en C.

Le triangle ABC est ainsi tracé et les côtés a,b et c peuvent être calculés à partir de α,p et S.

Par exemple on calcule AB de la manière suivante à partir de la relation AB = c = AP + PB.

On a AP = $r*\cot(\alpha/2)$ puis PQ = AQ - AP = $p/2 - r*\cot(\alpha/2)$. D'où IJ = PQ/ $\cos(\alpha/2)$ = $p/(2\cos(\alpha/2)) - r/\sin(\alpha/2)$.

Comme r = 2S/p et $r' = AQ*tan(\alpha/2) = p*tan(\alpha/2)/2$, on déduit IK = r.IJ/(r+r').

D'où l'angle IKM = θ tel que $\sin(\theta) = \text{IM/IK}$ et l'angle ABC = β tel que $\beta = 180^{\circ} - \alpha/2 - \theta$ et BP = BM = IM* $\tan(\beta/2) = r*\tan(\beta/2)$.