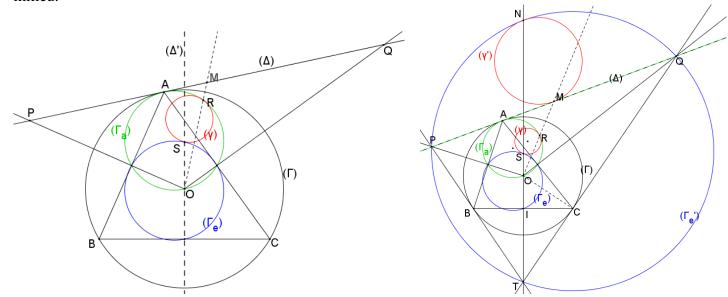
Problema n°767

ABC es un triángulo no rectángulo en A. Sean Γ la circunferencia circunscrita y O el circuncentro. Sea Δ la recta tangente al círculo Γ por A. La recta Δ y las mediatrices de los lados AB y AC se cortan respectivamente en los puntos P y Q.Sea γ el círculo tangente internamente al círculo Γ_a de diámetro OA y tangente exteriormente al círculo de Euler Γ_e de ABC en la intersección de la mediatriz del lado BC con este círculo. Sea R el punto de contacto de los círculos γ y Γ_a . Demostrar que la recta OR es la mediana del triángulo OPQ.

Solution proposée par Philippe Fondanaiche

La médiatrice (Δ ') du côté BC rencontre le cercle d'Euler (Γ_e) en un point S autre que le milieu du côté BC par lequel passe le cercle (Γ_e). Le cercle (γ) - en rouge dans la figure ci-après - est tangent au cercle (Γ_e) au point S et au cercle (Γ_a) au point R. Il s'agit de démontrer que la droite OR partage le segment PQ en son milieu.



On construit le triangle PQT <u>tangentiel</u> du triangle ABC obtenu en menant les tangentes au cercle (Γ) passant par les sommets A,B et C du triangle ABC. Les droites OP,OQ et OT sont les médiatrices des côtés AB,AC et BC.

On désigne par (Γ_e) le cercle circonscrit au triangle PQT. La droite OT médiatrice du côté BC est en même temps bissectrice de l'angle \angle PTQ. Elle rencontre le cercle (Γ_e) au point N qui est au milieu de l'arc PQ qui ne contient pas T.

Soit M le milieu de la corde PQ. On trace le cercle (γ') de diamètre MN qui est tangent à la fois au cercle (Γ_e) et à la droite (Δ).

On prend le cercle (Γ) comme <u>cercle d'inversion</u> de pôle O et de rapport r^2 avec r = rayon du cercle (Γ).

Par cette inversion la cercle (Γ_a) est transformé en la droite (Δ) et le cercle d'Euler (Γ_e) est transformé en le cercle (Γ_e). En effet si I désigne le milieu de BC par lequel passe (Γ_e), on a OI.OT = OC² = r^2 , cette relation étant évidemment de la même forme avec les milieux des côtés AB et AC. La réciproque est vraie, les cercles (Γ_a) et (Γ_e) sont les transformés de (Δ) et de (Γ_e).

Dès lors le transformé du cercle (γ ') tangent à (Δ) et à (Γ_e ') est un cercle tangent au cercle (Γ_a) et au cercle (Γ_e) en le point S transformé de N. Ce cercle n'est autre que le cercle (γ) et le point de contact R des cercles (γ) et (Γ_a) est le transformé du point M milieu de PQ. Les points O,R et M sont alignés.Cqfd