Problema 769

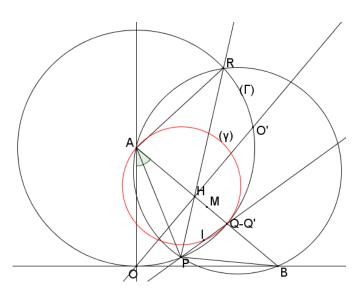
OAB es un triángulo con <AOB = 90° y altura OH.

P es un punto en la circunferenciacon centro A y radio AO.

La bisectriz del ángulo BPH se encuentra con la recta AB en Q

Determinar el lugar geometrico del punto V medio del segmento PQ al variar P sobre la circunferencia dada.

Solution proposée par Philippe Fondanaiche



Lemme: la bissectrice de l'angle ∠BPH passe par le point fixe Q à l'intersection du cercle (Γ) avec l'hypoténuse AB. **Démonstration:** on trace le point O' symétrique de O par rapport à H, puis le point Q' à l'intersection de (Γ) avec AB et enfin le point R qui est le deuxième point d'intersection de la droite PH avec (Γ) .

O' est sur le cercle (Γ) .

On a les relations $HP.HR = HO.HO' = HO^2$. Comme le triangle rectangle AOB a pour hauteur OH, on a $OH^2 = AH.HB$, ce qui entraine HP.HR = HA.HB. Les quatre points A,P,B et R sont cocycliques. Donc $\angle BPH = \angle BPR = \angle BAR = \angle Q'AR = 2\angle Q'PR$.

Il en résulte que $\angle Q'PR = \angle BPH/2$. Le point Q' est donc confondu avec le point Q.

Le lieu de I est alors le cercle (γ) homothétique de (Γ) par l'homothétie de centre Q et de rapport /12. Le cercle (γ) a pour diamètre AQ et il est parcouru en totalité quand P décrit tout le cercle (Γ).