Problema 770.-

Dado un triángulo ABC, sean I su incentro y D y E, los pies de las bisectrices interiores de los vértices B y C. Sea IJ la bisectriz interior de DIE y sea IK la bisectriz interior de BIC. Es <A=60º si y sólo si IK= 2 IJ.

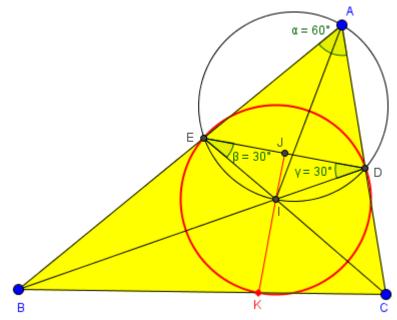
Seimiya, T: Crux Mathematicorum.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba. $\Rightarrow \angle A = 60^{\circ}$

Si $\angle A=60^{\circ}$ entonces los puntos ADEI son concíclicos ya que:

$$\angle IEA = 120^{\circ} - \frac{1}{2} \angle C \ y \ \angle IDA = 120^{\circ} - \frac{1}{2} \angle B.$$
 Por tanto, $\angle IEA + \angle IDA = 180^{\circ}$. De esta forma, $\angle DIE = 120^{\circ}$.

También deducimo que IE = ID. Y además, IJ = $\frac{1}{2}$ ID = $\frac{1}{2}$ IE, ya que los triángulos IJD y IJE son de ángulos $30^{\circ}, 60^{\circ} \text{ y } 90^{\circ}.$



Al examinar los triángulos BEI y BIK, observamos que tienen dos ángulos iguales 60° y $\frac{1}{2} \angle B$, y un lado común, IB. Por tanto, IK = IE = ID.

En definitiva, $IJ = \frac{1}{2}IK$. cqd ■