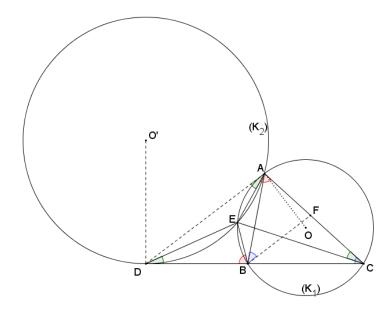
Problema n°772

En el triángulo ABD, sea un punto C distinto de B en el lado BD tal que AD sea tangente a la circunferencia circunscrita K_1 a ABC. Una circunferencia K_2 contiene a A y es tangente a BD en D. K_1 y K_2 intersecan en A y E, con E en el interior del triángulo ACD. Demostrar que $EB/EC=(AB/AC)^3$.

Mathematical Excalibur (2016): Vol 20(3). January- February - Problema 482.

Solution proposée par Philippe Fondanaiche



La droite BD est tangente au cercle K_2 : d'où \angle BDE = \angle DAE.

La droite AD est tangente au cercle K_1 , d'où $\angle DAE = \angle ACE$. Donc $\angle BDE = \angle ACE$.

Les points A,E,B,C sont cocycliques: \angle DBE = 180° - \angle CBE = \angle CAE.

Les triangles ACE et BDE sont donc semblables

D'où la relation (R_1) EB/EA = BD/AC.

Le théorème de Ptolémée appliqué au quadrilatère AEBC donne :EC.AB = EA.BC + EB.AC. (R2)

D'où en combinant les deux relations (R_1) et (R_2) , on obtient (R_3) : EB/EC = [AB/AC]. [BD/(BC+BD)].

Soit BF la parallèle à AD qui rencontre AC au point F. On a \angle BAD = \angle ABF.

Comme AD est tangente à K_1 , on a \angle BAD = \angle ACB. D'où \angle ABF = \angle ACB.

Les triangles ABF et ACB sont donc semblables et l'on a d'une part d'après Thalès BD/(BC+BD) = AF/AC et d'autre part AF/AB = AB/AC.

D'où BD/(BC+BD) = $(AB/AC)^2$. Il en découle d'après (R_3) : $EB/EC=(AB/AC)^3$. Cqfd