Problema 775

Sea \overrightarrow{ABC} con $\overline{AB} > \overline{AC}$.

Sea A \overrightarrow{ABF} equilátero hacia fuera de \overrightarrow{ABC} .

Sea BCG equilátero hacia dentro de ABC.

G pertenece a \overline{AF} si y sólo si $A = 60^{\circ}$.

Barroso R. (2016): Comunicación personal.

Solución de Ricard Peiró:

(⇐)

Supongamos que A = 60°. Consideremos la circunferencia circunscrita al triángulo ABC.

La circunferencia corta el lado \overline{AF} del triángulo \overline{ABF} en el punto P. El cuadrilátero APBC es inscriptible.

Aplicando el teorema de Tolomeo:

$$\angle PBC = 180^{\circ} - \angle CAF = 60^{\circ}$$
.

$$\overrightarrow{BP} = 360^{\circ} - (\overrightarrow{PC} + \overrightarrow{BC}) = 120^{\circ}$$
.

$$\angle PCB = \frac{1}{2}120^{\circ} = 60^{\circ}$$
.

Entonces, el triángulo BCP es equilátero.

Entonces, P = Q.

(⇒)

Supongamos que G pertenece a \overline{AF} .

Consideremos la circunferencia circunscrita al triángulo equilátero BCG

$$\angle GAB = 60^{\circ} = \angle GCB$$
.

Aplicando el teorema de Tolomeo el cuadrilátero AGBC es inscriptible:

$$\angle BAC = \angle BGC = 60^{\circ}$$
.

Entonces, $A = 60^{\circ}$



