Problema 775.

Sea ABC con AB>AC.

Sea ABF equilátero hacia fuera de ABC.

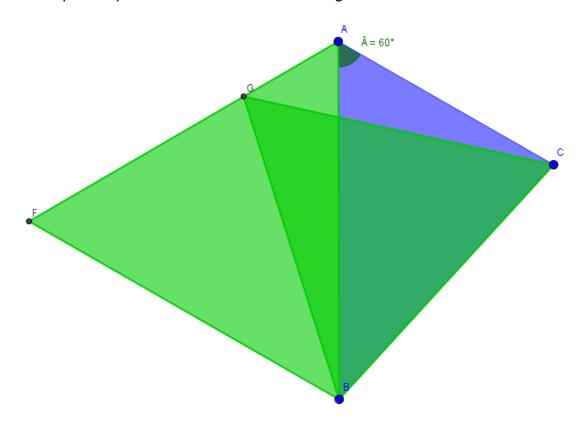
Sea BCG equilátero hacia dentro de ABC.

G pertenece a AF si y sólo si Â=60°

Barroso R. (2016): Comunicación personal.

Juan Antonio Villegas Recio, alumno de 2ºBach del I.E.S. Blas Infante (Córdoba)

El esquema que define el enunciado es el siguiente:



Para que G pertenezca a AF, deben existir dos ángulos, \widehat{FGB} , que llamaremos α , y \widehat{AGC} , que llamaremos β . Se tiene que cumplir que $\alpha+\beta=120^{\circ}$, porque el ángulo $\widehat{BGC}=60^{\circ}$, al ser un ángulo de un triángulo equilátero.

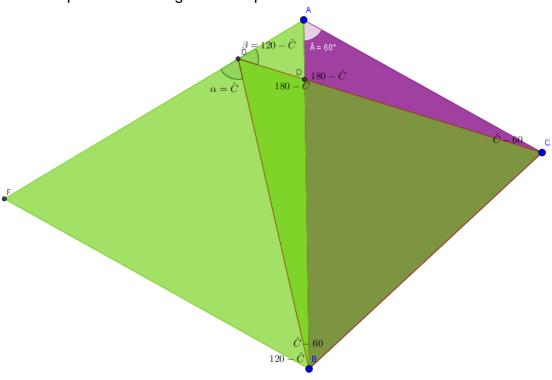
Así:

1. Demostrar que si \hat{A} =60, α + β =120.

Para demostrarlo, despejaremos α y β en función del ángulo $\hat{\mathcal{C}}$.

Primero nos centraremos en β , y en el triángulo AGC. El ángulo Â=120°, y C sería $\hat{\mathcal{C}}$ -60, así que $\beta=180-120-(\hat{\mathcal{C}}-60)$; $\beta=120-\hat{\mathcal{C}}$

Sin embargo, despejar α no es tan sencillo, para llegar hasta ahí disponemos del siguiente esquema:



- Con respecto al ángulo \widehat{ADC} , si $\widehat{A}=60$ y $\widehat{ACD}=\widehat{C}-60$, $\widehat{ADC}=180-60-(\widehat{C}-60)=180-\widehat{C}$.
- Por lo tanto, $\widehat{GDB} = 180 \widehat{C}$.
- Para el ángulo \widehat{GBD} , si \widehat{BGD} =60. \widehat{GBD} =180-60-(180- \widehat{C})= \widehat{C} -60.
- Como \widehat{DBG} y \widehat{GBF} tienen que sumar 60°, entonces \widehat{GBF} =60-(\widehat{C} -60)=120- \widehat{C}
- Por último, $\alpha=180-60-(120-\hat{\mathcal{C}})=\hat{\mathcal{C}}; \alpha=\hat{\mathcal{C}}$

Llegados a esta conclusión, recordamos que hay que demostrar que $\alpha+\beta=120^{\circ}$, así, sustituyendo:

$$\alpha + \beta = 120$$
; $\hat{C} + (120 - \hat{C}) = 120$

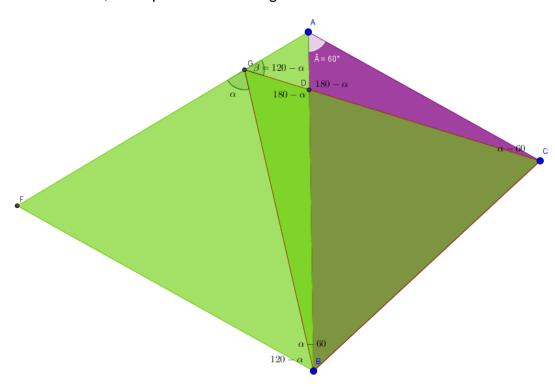
Queda demostrado que

si Â=60°, G
$$\in \overline{AF}$$
.

2. Demostrar que si $\alpha+\beta=120$, $\hat{A}=60$.

De existir dos ángulos con vértice común G, el ángulo debe medir 60°.

En este caso, el esquema sería el siguiente:



- Si \widehat{FGB} = α ; \widehat{FBG} =180- α -60=120- α
- El ángulo \widehat{GBA} =60-(120- α)= α -60
- El ángulo $\widehat{GDB} = \widehat{ADC} = 180 (\alpha 60) 60 = 180 \alpha$
- Por tanto, $\widehat{BDC} = \widehat{GDA} = \alpha$
- Por otra parte, $\widehat{ACD} = 180 (180 \alpha) 60 = \alpha 60$
- De tal forma que si $\hat{C}=(\alpha-60)+60$, $\hat{C}=\alpha$
- Por último, $\widehat{DBC} = \widehat{B} = 180 \alpha 60 = 120 \alpha$

En conclusión, queremos averiguar el valor de para que

$$\hat{A} + (120-\alpha) + \alpha = 180 (A+B+C=180).$$

Así,
$$\hat{A}=180-120+\alpha-\alpha$$
; $\hat{A}=60^{\circ}$

Demostrando así que si existen los ángulos con vértice común, G, α y β , G \in \overline{AF} y \hat{A} =60. Así demostramos que:

Si G
$$\in \overline{AF}$$
, Â=60°.

Juan Antonio Villegas Recio

Alumno de 2ºBachillerato del I.E.S. Blas Infante (Córdoba).