Propuesto por Philippe Fondanaiche

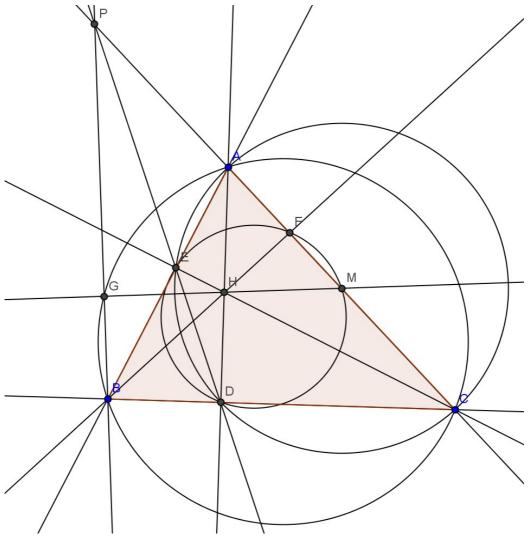
Problema 776.

ABC es un triángulo escaleno. Denotamos por (Γ) el círculo circunscrito, el ortocentro H, las alturas AD y CE, M el punto medio del lado AC. La recta (DE) y la recta (AC) se cortan en el punto P.

Demostrar que las rectas (BP) y (HM) son perpendiculares y que su punto de encuentro es en el círculo (Γ).

Fondanaiche, P.(2016: Comunicación personal.

Solución del director:



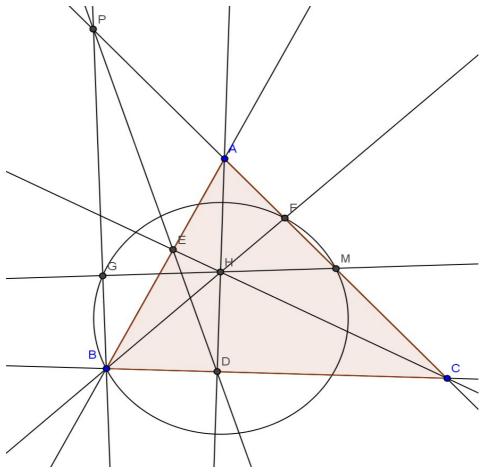
Consideremos la circunferencia de Euler Ω que contiene E, D, M y F, siendo F el pie de la altura del vértice B.

Consideremos la circunferencia Σ de diámetro AC que contiene a E y D.

 Ω y Σ tienen en común E y D. Por ello, PF PM = PE PD = PA PC.

Sea G el punto de corte de Γ con PB, de donde PG PB = PA PC = PF PM.

Así los puntos G,B,F,M son concíclicos en una circunferencia Ψ



cuyo diámetro es BM. Por lo tanto, MG es perpendicular a PB, y contiene a H, cqd.