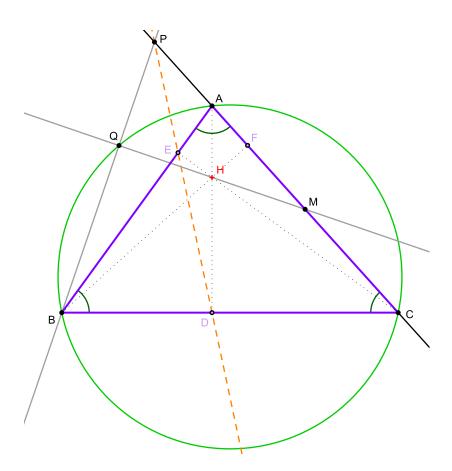
PROBLEMA 776. Propuesto por Philippe Fondanaiche (2016): Comunicación personal

Solución: José Montes Valderrama

Maestro del Centro Público de Educación de Adultos «Triana» (Sevilla)

1. Enunciado

ABC es un triángulo escaleno. Denotamos por (Γ) el círculo circunscrito, el ortocentro H, las alturas AD y CE, M el punto medio del lado AC. La recta (DE) y la recta (AC) se cortan en el punto P. Demostrar que las rectas (BP) y (HM) son perpendiculares y que su punto de encuentro es en el círculo (Γ) .



2. Las rectas BP y HM son perpendiculares

Si se considera el origen de coordenadas rectangulares en D(0,0) se tiene que

$$A(0,h),\ B(e,0),\ C(k,0),\ M\left(\frac{k}{2},\frac{h}{2}\right)$$
y siendo

$$e = -\frac{a^2 - b^2 + c^2}{2a} \qquad \qquad k = \frac{a^2 + b^2 - c^2}{2a} \qquad \qquad h = \frac{\sqrt{-a^4 + 2a^2b^2 - b^4 + 2a^2c^2 + 2b^2c^2 - c^4}}{2a}$$

se obtiene la proyección
$$E\left(\frac{(a^2-b^2-c^2)((a^2-b^2+c^2)}{4ac^2}, \frac{a^2-b^2+c^2)h}{2c^2}\right)$$

el ortocentro
$$H\left(0, \frac{a^4-b^4+2b^2c^2-c^4}{4a^2h}\right)$$

y el punto
$$P\left(\frac{(a^2-b^2-c^2)(a^2+b^2-c^2)}{4a(a^2-c^2)}, \frac{(a^2+b^2-c^2)h}{2(a^2-c^2)}\right)$$

siendo

$$m_{BP} = \frac{2a(a^2 + b^2 - c^2)h}{3a^4 - 2a^2b^2 - b^4 - 2a^2c^2 + 2b^2c^2 - c^4}$$

$$m_{HM} = \frac{-3a^4 + 2a^2b^2 + b^4 + 2a^2c^2 - 2b^2c^2 + c^4}{2a(a^2 + b^2 - c^2)h}$$

verificándose que la relación entre sus pendientes $m_{BP} = \frac{-1}{m_{HM}} \Rightarrow BP \perp HM$

3. Q está en la circunferencia circunscrita

Si $Q \in \Gamma \Rightarrow$ el cuadrílátero AQBC es cíclico y por ello $\angle AQB + \angle BCA = 180^{\circ}$, razón por la cual habrá que demostrar que $\angle AQB = 180^{\circ} - \hat{C}$

•
$$\angle DOB = \hat{C} \text{ y } \angle MOD = \angle HOD = 90^{\circ} - \hat{C}$$

El cuadrilátero BDHQ es cíclico, pues los ángulos opuestos $\angle HQB$ y $\angle BDH$ son rectos.

Teniendo en cuenta que $\angle HBD = \angle FBC = 90^{\circ} - \hat{C} \Rightarrow \angle DHB = 90^{\circ} - (90^{\circ} - \hat{C}) = \hat{C} \Rightarrow \angle DQB = \hat{C}$ v como $BQ \perp HQ \Rightarrow \angle HQD = 90^{\circ} - \angle DQB = 90^{\circ} - \hat{C} = \angle MQD$

• $\angle DMA = 2\hat{C}$

La circunferencia con centro en el punto medio de un lado y radio mitad de ese lado pasa por los pies de las alturas de los otros dos. Esta propiedad garantiza que en el triángulo isósceles $CMD, \overline{MC} = \overline{MD} \Rightarrow \angle CMD = 180^{\circ} - 2\hat{C} \Rightarrow \angle DMA = 180^{\circ} - (180^{\circ} - 2\hat{C}) = 2\hat{C}$

ullet El cuadrilátero AQDM es cíclico

En el triángulo rectángulo CAD, $\angle CAD = \angle MAD = 90^{\circ} - \hat{C}$

Puede deducirse entonces que si $\angle MAD = 90^{\circ} - \hat{C}$ y $\angle MQD = 90^{\circ} - \hat{C} \Rightarrow \Box AQDM$ es cíclico

Al ser $\Box AQDM$ cíclico, $\angle DMA$ y $\angle AQD$ son suplementarios y por ello $AQD=180^{\rm o}-2\hat{C}$

• $\angle AQB = 180^{\circ} - \hat{C}$

$$\angle AQB = \angle AQD + \angle DQB = 180^{\circ} - 2\hat{C} + \hat{C} = 180^{\circ} - \hat{C}$$