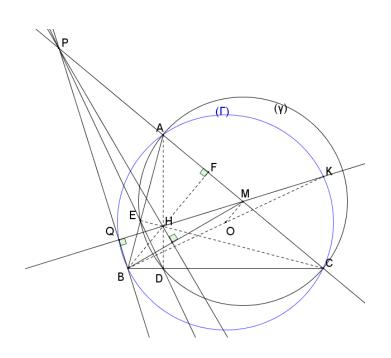
Problema 776.

ABC es un triángulo escaleno. Denotamos por (Γ) el círculo circunscrito, el ortocentro H, las alturas AD y CE, M el punto medio del lado AC. La recta (DE) y la recta (AC) se cortan en el punto P.

Demostrar que las rectas (BP) y (HM) son perpendiculares y que su punto de encuentro es en el círculo (Γ) .

Solution proposée par Philippe Fondanaiche



Les angles \angle ADC et \angle AEC étant droits, les quatre points A,C,D et E sont sur un même cercle (γ) de diamètre AC et de centre M.

Par construction, la polaire du point B par rapport au cercle (γ) est la droite (HP). Il en résulte que cette droite est perpendiculaire à la droite joignant le point B au centre M du cercle (γ).

Si on désigne par F le pied de la hauteur issue de B dans le triangle ABC, il apparaît que le point H, orthocentre du triangle ABC, est aussi l'orthocentre duu triangle BMP avec H à l'intersection des deux hauteurs issues de B et de P.

Dès lors la droite (HM) est perpendiculaire à la droite (BP).

Soient Q le point de rencontre de ces deux droites et O le centre du cercle (Γ). La droite (HM) rencontre le cercle (Γ) en deux points K et Q'.Il est bien connu***que le point K est à la fois le point symétrique de H par rapport à M et le point diamétralement opposé au point B dans le cercle (Γ). Le triangle BKQ' est alors rectangle en Q' et le point Q' est donc confondu avec le point Q.

*** Voir P.Debart - Géométrie du triangle- 4. Hauteurs et orthocentre