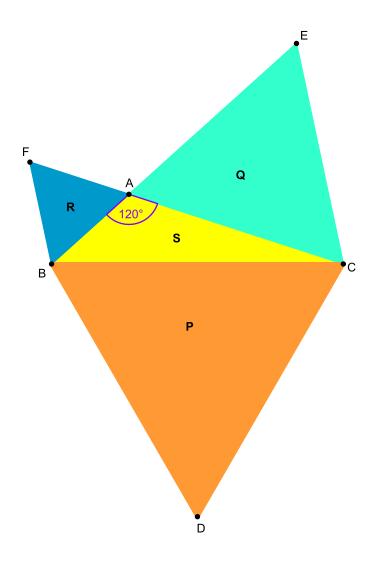
PROBLEMA 778. César Beade Franco(2016):Comunicación personal

Solución: José Montes Valderrama

Maestro del Centro Público de Educación de Adultos «Triana» (Sevilla)

1. Enunciado

Sea el triángulo ABC. Sobre el exterior de sus lados se dibujan los triángulo equiláteros BCD, ACE y ABF de áreas P,Q,R, respectivamente. Sea S el área del triángulo ABC. Probar que P-S=Q+R si y solo si el ángulo BAC mide 120 °.



$$2. \quad P - S = Q + R \Rightarrow \hat{A} = 120^{\circ}$$

$$P - S = Q + R \Rightarrow \frac{a^2\sqrt{3}}{4} - \frac{ah}{2} = \frac{b^2\sqrt{3}}{4} + \frac{c^2\sqrt{3}}{4}$$

despejando
$$a = \frac{2\sqrt{3}(a^2 - b^2 - c^2)}{2h}$$

elevando al cuadrado los dos miembros, dividiéndolos por a^2 y teniendo en cuenta que la altura de A

$$h = \frac{\sqrt{-a^4 + 2a^2b^2 - b^4 + 2a^2c^2 + 2b^2c^2 - c^4}}{2a}$$

$$a^{2} = \left(\frac{2\sqrt{3}(a^{2} - b^{2} - c^{2})}{2h}\right)^{2} = \frac{3(a^{2} - b^{2} - c^{2})^{2}}{4\frac{-a^{4} + 2a^{2}b^{2} - b^{4} + 2a^{2}c^{2} + 2b^{2}c^{2} - c^{4}}{4a^{2}}} \Rightarrow$$

$$\frac{3a^4 - 6a^2b^2 + 3b^4 - 6a^2c^2 + 6b^2c^2 + 3c^4}{-a^4 + 2a^2b^2 - b^4 + 2a^2c^2 + 2b^2c^2 - c^4} = 1 \Rightarrow$$

$$3a^4 - 6a^2b^2 + 3b^4 - 6a^2c^2 + 6b^2c^2 + 3c^4 - (-a^4 + 2a^2b^2 - b^4 + 2a^2c^2 + 2b^2c^2 - c^4) = 0 \Rightarrow$$

$$a^4 - 2a^2b^2 + b^4 - 2a^2c^2 + b^2c^2 + c^4 = 0$$

factorizando

$$(a^2 - b^2 - bc - c^2)(a^2 - b^2 + bc - c^2) = 0$$

de cuyas soluciones para $P - S = \frac{a^2\sqrt{3}}{4} - \frac{ah}{2}$

(I)
$$a^2 = b^2 + c^2 + bc$$
 y $a = +\sqrt{b^2 + c^2 + bc}$

(II)
$$a^2 = b^2 + c^2 - bc$$
 y $a = -\sqrt{b^2 + c^2 + bc}$

solo es aceptable (I)
$$a^2 = b^2 + c^2 + bc = b^2 + c^2 - 2bc\left(-\frac{1}{2}\right) = b^2 + c^2 - 2bc\cos 120^\circ \Rightarrow \hat{\pmb{A}} = \textbf{120}^\circ$$

pues la solución (II) es satisfactoria desde el punto de vista algebraico, pero no desde el geométrico al exigir que $a = -\sqrt{b^2 + c^2 + bc}$, no pudiendo ser negativo un lado.

3.
$$\hat{A} = 120^{\circ} \Rightarrow P - S = Q + R$$

Si
$$\hat{A} = 120 \Rightarrow a^2 = b^2 + c^2 - 2bc \cos 120^{\circ} = b^2 + c^2 + bc$$

sustituyendo este valor de a^2 en h, se tiene que $h = \frac{bc\sqrt{3}}{2a}$

así pues
$$\mathbf{P} - \mathbf{S} = \frac{a^2 \sqrt{3}}{4} - a \frac{\frac{bc\sqrt{3}}{2a}}{2}$$

pero
$$bc = a^2 - b^2 - c^2$$

$$\frac{a^2\sqrt{3}}{4} - \frac{bc\sqrt{3}}{4} = \frac{a^2\sqrt{3}}{4} - \frac{(a^2 - b^2 - c^2)\sqrt{3}}{4} = \frac{b^2\sqrt{3}}{4} + \frac{c^2\sqrt{3}}{4} = \mathbf{Q} + \mathbf{R}$$