Problema 778

Sea el triángulo $\stackrel{\triangle}{ABC}$. Sobre el exterior de sus lados se dibujan los triángulo equiláteros $\stackrel{\triangle}{BCD}$, $\stackrel{\triangle}{ACE}$, $\stackrel{\triangle}{ABF}$ áreas P, Q, R, respectivamente. Sea S el área del triángulo $\stackrel{\triangle}{ABC}$ Probar que P-S=Q+R si y sólo si el ángulo $A=120^{\circ}$. Beade, C. (2016): Comunicación personal.

Solución de Ricard Peiró i Estruch:

Las áreas de los triángulos equiláteros P; Q, R son:

$$P = \frac{\sqrt{3}}{4}a^2$$
, $Q = \frac{\sqrt{3}}{4}b^2$, $R = \frac{\sqrt{3}}{4}c^2$. Entonces:

$$a^2 = \frac{4\sqrt{3}}{3}P$$
, $b^2 = \frac{4\sqrt{3}}{3}Q$. $c^2 = \frac{4\sqrt{3}}{3}R$. (\Leftarrow)

Supongamos que $A = 120^{\circ}$.

Aplicando el teorema del coseno al triángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{ABC}}$:

$$a^2 = b^2 + c^2 - 2bc \cdot cos120^0$$
.

$$\frac{4\sqrt{3}}{3}P=\frac{4\sqrt{3}}{3}Q+\frac{4\sqrt{3}}{3}R-\frac{4\sqrt{3}}{3}\sqrt{QR}$$
 . Simplificando:

$$P - \sqrt{QR} = Q + R$$
.

Aplicando la fórmula trigonométrica del área del triángulo $\stackrel{\triangle}{\mathsf{ABC}}$:

$$S = \frac{bc \cdot sin 60^{o}}{2} = \frac{\frac{4\sqrt{3}}{3}\sqrt{QR} \frac{\sqrt{3}}{2}}{2} = \sqrt{QR} \ .$$

Entonces, P-S=Q+R.

(⇒)

Supongamos que P - S = Q + R.

Aplicando el teorema del coseno al triángulo ABC:

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A.$$

$$\frac{4\sqrt{3}}{3}P = \frac{4\sqrt{3}}{3}Q + \frac{4\sqrt{3}}{3}R - 2\frac{4\sqrt{3}}{3}\sqrt{QR} \cdot \cos A.$$

$$P = Q + R - 2\sqrt{QR} \cdot \cos A.$$

Aplicando la fórmula trigonométrica del área del triángulo $\stackrel{\scriptscriptstyle\Delta}{\mathsf{ABC}}$:

$$S = \frac{bc \cdot sin A}{2} = \frac{\frac{4\sqrt{3}}{3}\sqrt{QR} sin A}{2} \cdot \sqrt{QR} = \frac{\sqrt{3}}{2} \frac{1}{sin A} S.$$

$$P = Q + R - 2\frac{\sqrt{3}}{2}\frac{1}{\sin A} \cdot \cos A \cdot S.$$

$$P - (Q + R) = -\sqrt{3} \frac{\cos A}{\sin A} S = 0$$
. $S = -\sqrt{3} \frac{\cos A}{\sin A} S$. $tgA = -\sqrt{3}$, entonces, $A = 120^{\circ}$.

