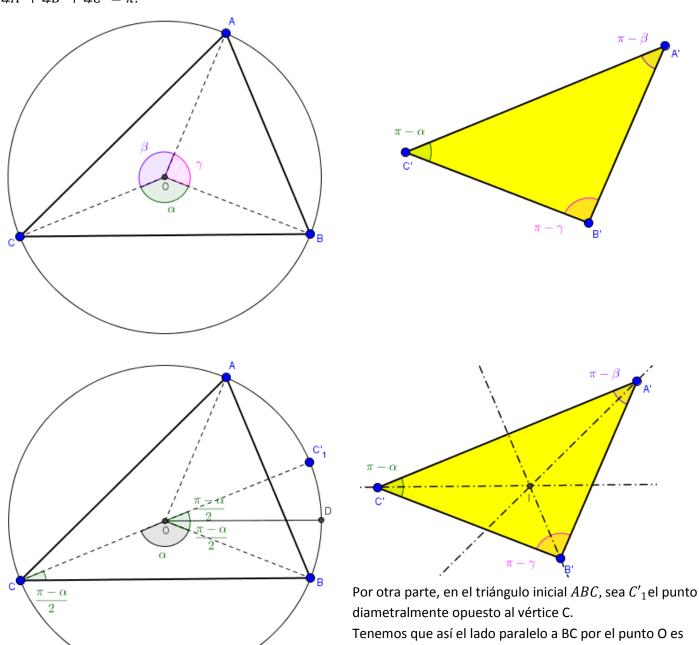
Problema 782.-

Sea ABC un triángulo y O su circuncentro. Sea A'B'C' otro triángulo de lados A' B', B' C' y C'A' paralelos respectivamente a OA, OB, y OC. Si trazamos por A', B', C', respectivamente s, r y t paralelas a AC, AB y a BC, s, r y t se intersecan en el incentro de A' B' C'.

Wolstenholme, J. (1867): A Book of Mathematical Problems on Subjects Included in the Cambridge Course (p. 6)

Solución de Florentino Damián Aranda Ballesteros, profesor de Matemáticas del IES Blas Infante de Córdoba.

Siguiendo las instrucciones del enunciado, construimos el triángulo $A^{'}B^{'}C^{'}$. Llamando α,β y δ a los ángulos $\angle BOC$, $\angle COA$ y $\angle AOB$, respectivamente, tenemos que $\alpha+\beta+\gamma=2\pi$. El triángulo construido $A^{'}B^{'}C^{'}$ tiene como ángulos $\angle A^{'}=\pi-\beta$, $\angle B^{'}=\pi-\gamma$ y $\angle C^{'}=\pi-\alpha$. Notamos que, en efecto, esta construcción es posible ya que $\angle A^{'}+\angle B^{'}+\angle C^{'}=\pi$.



circunferencia que el ángulo inscrito $\angle C'_1CB$.

Por tanto, la recta t, paralela al lado BC por el vértice C' será su bisectriz interior.

De igual modo, las rectas, r y s, serán las bisectrices interiores de los otros dos vértices en B' y A', respectivamente.

bisectriz del ángulo $\angle C'_1OB = \pi - \alpha$, por ser este el

ángulo central que abarca el mismo arco en la

En definitiva, las rectas s, r y t se intersecan en el incentro del triángulo A'B'C', cqd.