Problema 784.-

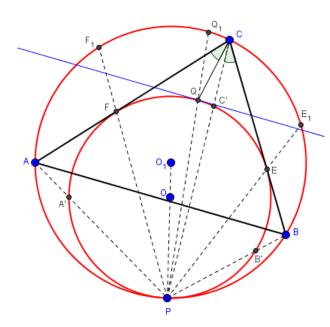
Sea Ω la circunferencia circunscrita al triángulo ABC. La circunferencia ω es tangente a los lados AC y BC, y es tangente internamente a la circunferencia Ω en el punto P.

Una recta paralela a AB que corta internamente al triángulo ABC, es tangente a ω en el punto Q. Demostrar que <ACP=<QCB.

https://www.egmo.org/egmos/egmo5/11 de Abril de 2013

Solución de Florentino Damián Aranda Ballesteros, profesor de Matemáticas del IES Blas Infante de Córdoba.

Construimos la circunferencia Ω circunscrita al triángulo ABC y la circunferencia ω , que es tangente a



los lados AC y BC y tangente internamente a la circunferencia Ω en el punto P. De este modo, podemos considerar que ambas circunferencias son homotéticas de centro, el propio punto P. Así, podemos detallar los siguientes hechos de interés:

Hecho 1.- La bisectriz del ángulo $\angle CPB$ ha de pasar necesariamente por E, punto de contacto de la circunferencia ω y el lado BC. Eso es así porque al ser este lado perpendicular a su radio vector OE, entonces el radio vector O_1E_1 , también será perpendicular a la cuerda BC de la circunferencia Ω . Por tanto, O_1E_1 es la mediatriz de BC y así PE_1 es la bisectriz del ángulo $\angle CPB$.

De igual modo, PF_1 es la bisectriz del ángulo $\angle CPA$.

Hecho 2.- Sea la recta paralela a AB y que es tangente a ω en el punto Q. Por tanto, por la homotecia dada, el punto Q_1 será el punto medio del arco AB en la circunferencia Ω .

Hecho 3.- Vamos a deducir la igualdad de ángulos $\measuredangle F_1PQ_1 = \measuredangle CPE_1$. Para ello, a partir de la igualdad $\measuredangle Q_1PA = \measuredangle Q_1PB$, sabemos que $\measuredangle Q_1PA = \measuredangle APF_1 + \measuredangle F_1PQ_1$, entonces $\measuredangle Q_1PA = \measuredangle F_1PC + \measuredangle F_1PQ_1 = \measuredangle F_1PQ_1 + \measuredangle Q_1PC + \measuredangle F_1PQ_1 = 2\measuredangle F_1PQ_1 + \measuredangle Q_1PC$.

Por otro lado, $\angle Q_1PB = \angle Q_1PC + \angle CPE_1 + \angle E_1PB$, entonces

Hecho 4.- De la igualdad anterior
$$\not\preceq F_1PQ_1 = \not\preceq CPE_1 \rightarrow \not\preceq FPQ = \not\preceq C'PE \rightarrow \begin{cases} \overline{FQ} = \overline{EC'} \\ \not\preceq CFQ = \not\preceq CEC' \end{cases}$$

Como $\overline{CF} = \overline{CE}$, por ser ambos segmentos tangentes a la misma circunferencia ω . En definitiva, los triángulos ΔCFQ y $\Delta CEC'$ son semejantes y congruentes. Así entonces, $\angle FCQ = \angle ECC'$

$$\angle ACP = \angle FCQ + \angle QCP = \angle ECC' + \angle QCP = \angle QCB \rightarrow$$

$$\angle ACP = \angle QCB, \quad cqd.$$