Problema 784.

Problema 5.- Sea Ω la circunferencia circunscrita al triángulo ABC. La circunferencia ω es tangente a los lados AC y BC, y es tangente internamente a la circunferencia Ω en el punto P. Una recta paralela a AB que corta internamente al triángulo ABC, es tangente a ω en el punto Q.

Demostrar que <ACP=<QCB.

https://www.egmo.org/egmos/egmo5/ 11 de abril de 2013

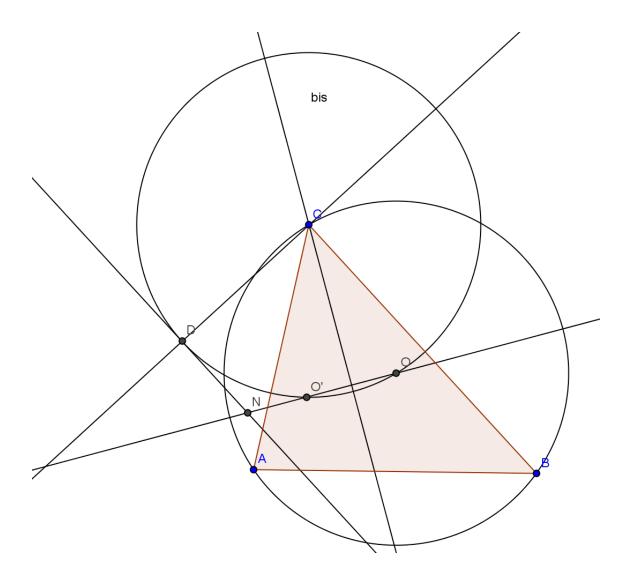
Solución del director.

En primer lugar estudiemos la construcción de la circunferencia ω .

Dado ABC, tracemos la circunferencia circunscrita de centro O y radio R.

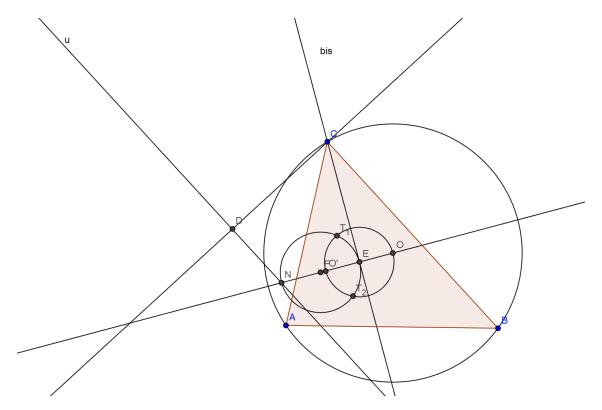
Tracemos la paralela u interiormente a CA a distancia R.

Tracemos la bisectriz del ángulo C. Tracemos el simétrico O' de O respecto a la bisectriz.



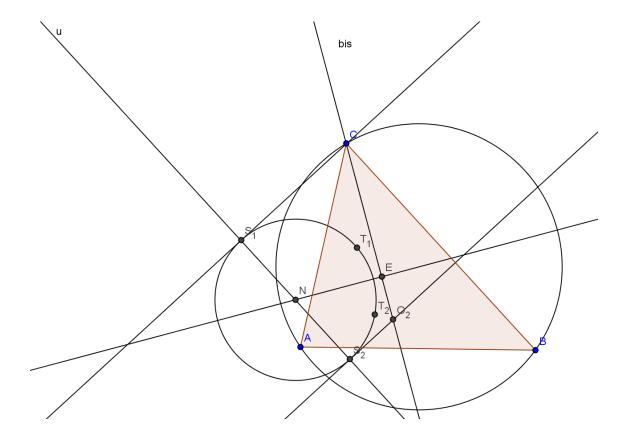
Tracemos la recta OO' que cortará a u en N.

Tracemos la circunferencia de diámetro OO'.



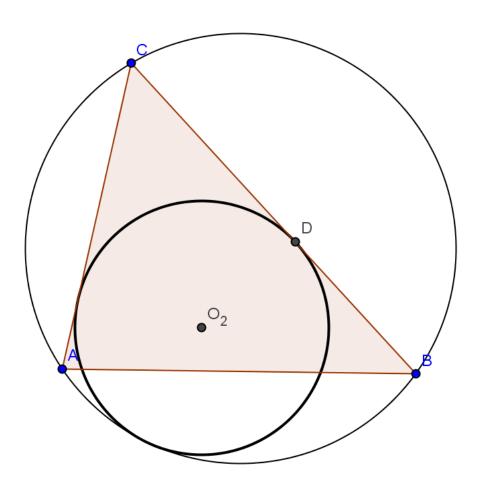
Hallemos las rectas tangentes desde N a la circunferencia OO'. Sean T1 y T2 los puntos de tangencia.

Con centro en N tracemos la circunferencia que contenga a $T_1\,T_2$. Corta a u en S1 y S2.



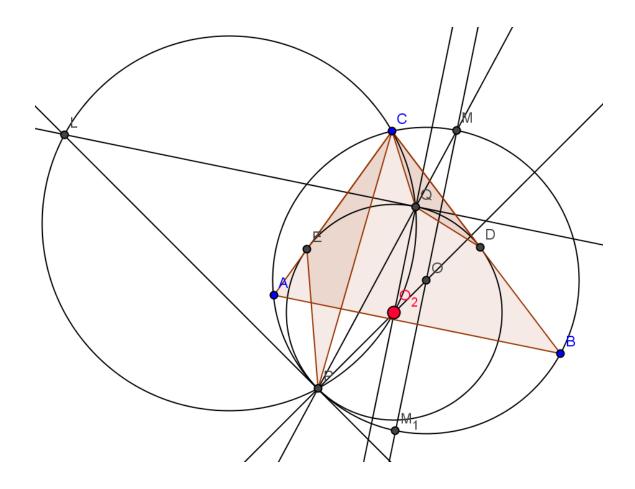
O_1 coincide con C

O2 es el centro de ω



Siguiendo a González y Palencia (1992) trazado geométrico (I) (p. 196)

Tracemos ahora la tangente a ω que sea paralela a AB, y tracemos la tangente común a ω y Ω por P.



Sea Q el punto de tangencia buscado en ω , que es paralelo a AB por el punto en que la perpendicular por O_2 a AB corta a ω en el interior del triángulo.

Las tangentes a P y Q se cortan en L.

Tracemos la mediatriz de AB que cortará a Ω en M y M'

El triángulo PO₂Q es semejante a POM, por lo que MQP están alineados.

CM₁ es la bisectriz de ACB, por lo que contiene a O₂

 $\angle PMM_1 = \angle PCM_1$ por arco capaz de PM₁

Luego
$$\angle PQO_2 = \angle PMM_1 = \angle PCO_2$$

Luego por arco capaz, CQO_2P con concíclicos, y dicha circunferencia contiene a L, pues QO_2PL también son concíclicos.

Es decir, se concluye lo pretendido, $\angle CPO_2 = \angle CO_2Q \rightarrow \angle ACP = \angle QCB$.

Ricardo Barroso Campos.

Jubilado. Sevilla.