Problema 789.-

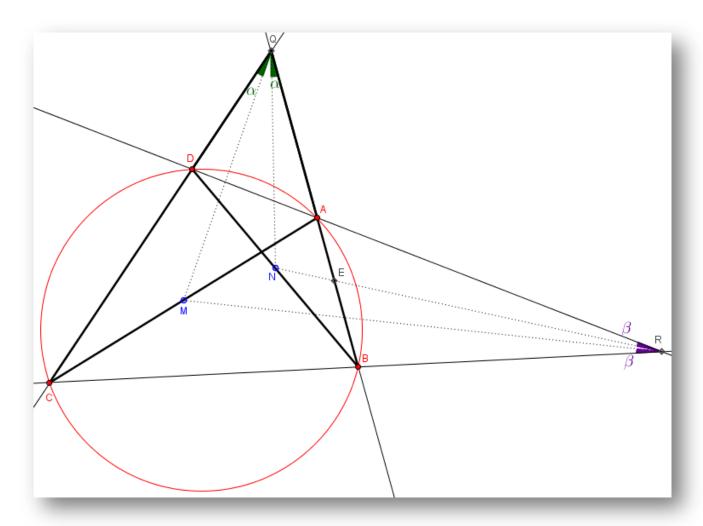
Sea el triángulo ABC y D un punto cualquiera de la circunferencia circunscrita a ABC. Las rectas AB y CD se cortan en un punto Q. Las rectas BC y AD se cortan en un punto R. Sean M y N los puntos medios de las cuerdas AC y BD.

Demostrar que la suma de los ángulos de QMR y QNR permanece constante e igual a 180º (módulo 360º) cuando D recorre la circunferencia circunscrita.

Tournament of the Towns Senior. A level Fall (2015). Problem nº 4. Propuesto por Philippe Fondanaiche, webmaster de www.diophante.fr

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Una vez realizada la construcción, observamos los siguientes hechos de interés:



Hecho 1.- De la semejanza existente entre los triángulos $\Delta ACQ~y~\Delta DBQ$, podemos considerar las medianas QM y QN y así observar la semejanza existente en los triángulos $\Delta MCQ~y~\Delta NBQ$.

Por tanto, será cierta la igualdad entre los ángulos $\angle CQM = \angle BQN = \alpha$.

De igual modo, deducimos a partir de la semejanza entre los triángulos ΔACR y ΔBDR , la de los triángulos ΔMCR y ΔNDR . Y así entonces obtenemos la igualdad entre los ángulos $\angle CRM = \angle DRN = \beta$.

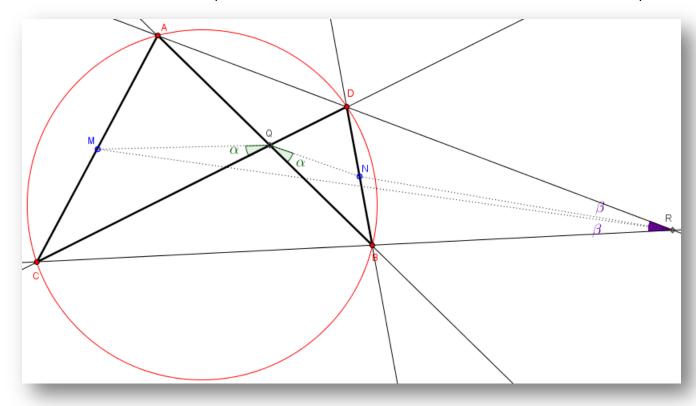
Hecho 2.- Sea E el punto donde el segmento NR corta al lado AB. El valor de cada uno de los ángulos a considerar, $\angle QMR$ y $\angle QNR$ se puede determinar a partir de la figura dada del siguiente modo:

$$\angle QMR = \angle AMR + \angle QMA = (\angle MCR + \beta) + (\angle QCA + \alpha) = \angle DCB + \alpha + \beta.$$

$$\angle QNR = \angle QNE = \angle AER - \alpha = (\angle QAR - \beta) - \alpha = \angle DAB - \beta - \alpha.$$

Hecho 3.- Hallamos el valor de la suma solicitada $\angle QMR + \angle QNR$. $\angle QMR + \angle QNR = \angle DCB + \alpha + \beta + \angle DAB - \beta - \alpha = \angle DCB + \angle DAB = \pi$.

Veamos que esta propiedad es independiente de la posición relativa que tenga el punto D sobre circunferencia circunscrita. Sea que D esté ahora situado sobre el arco AB. Entonces se verificará que



Del mismo modo, procederíamos si el punto D estuviera ahora situado sobre el arco BC.