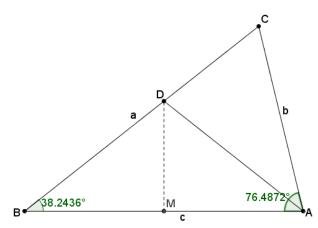
Problema 792

14.25.- Dado un triángulo ABC cuyos lados miden a = BC, b = CA, c = AB, demuestre que $a^2 - b^2 = bc$ si y solo si < CAB = 2 < ABC.

De Diego y otros (2014): Problemas de oposiciones al Cuerpo de Enseñanza Secundaria. Tomo 6. (p. 133)(Ceuta) Editorial Deimos.

Solution proposée par Philippe Fondanaiche



1er cas : \angle CAB = 2 \angle ABC.

Soient BC = a, CA = b et AB = c, \angle ABC = α et \angle CAB = 2α .

On trace la bissectrice DA de l'angle ∠CAB. Le triangle ADB est isocéle de sommet D.

Soit M le milieu de AB. On a donc $DB = BM/cos(\alpha) = c/2cos(\alpha)$ et $DB/BA = 1/2cos(\alpha)$.

Par ailleurs DB/BA= DC/CA = (DB + DC)/(BA + CA) = a/(b + c).

Il en résulte DB/BA = $1/2\cos(\alpha) = a/(b+c)$ qui équivaut à $\cos(\alpha) = (b+c)/2a$

D'autre part $b^2 = c^2 + a^2 - 2ac*\cos(\alpha)$ ou encore $\cos(\alpha) = (c^2 + a^2 - b^2)/2ac$.

En rapprochant les deux dernières relations, on obtient $c(b+c) = c^2 + a^2 - b^2$ soit $a^2 - b^2 = bc$.

2ème cas : $a^2 - b^2 = bc$

En rapprochant les deux égalités $a^2 - b^2 = bc$ et $b^2 = c^2 + a^2 - 2ac*\cos(\alpha)$, on obtient $(b + c) = 2a\cos(\alpha)$.

Or DB/BA = a/(b+c) soit DB = ac/(b+c).

Il en résulte que DB = $ac/(2acos(\alpha)) = c/2cos(\alpha)$.

Le point D est donc sur la verticale passant par le milieu M de BA.

Le triangle ADB est isocèle de sommet D.

Donc $\angle ABC = \angle ABD = \angle BAD = \angle CAB/2$. Cqfd.