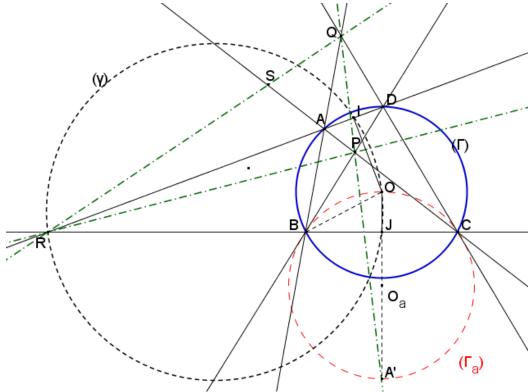
Problema 794

ABC es un triángulo y su círculo circunscrito (Γ) D es un punto genérico de (Γ) Las líneas AC y BD se cortan en un punto P. Las líneas AB y CD se cortan en un punto Q. Las líneas BC y AD se cortan en un punto R. Las lineas AC y QR se cortan en un punto S. Cuando el punto D recorre el círculo (Γ),

- 1) Demostrar que la recta PQ pasa por un punto fijo que se determinará.
- 2) Encontrar el lugar del segundo punto de intersección de los círculos circunscritos a los triángulos ABS y CDS

Solution proposée par Philippe Fondanaiche

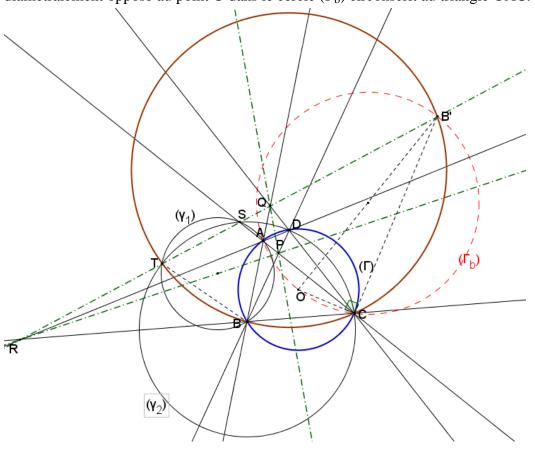
 Q_1 La droite PQ passe par le point fixe A' diamétralement opposé au centre O du cercle (Γ) dans le cercle (Γ _a) circonscrit au triangle OBC.



Soient I et J les milieux des cordes AD et BC dans le cercle (Γ). Les droites OI et OJ sont perpendiculaires aux droites AD et BC et les quatre points O,I,R,J sont sur un même cercle (γ) de diamètre OR.

Par construction le point R est le pôle de la droite PQ par rapport eu cercle (Γ). Il en résulte que l'inverse de la droite PQ dans l'inversion de centre O et de puissance $OA^2 = OB^2$ est le cercle (γ) et réciproquement dans cette même inversion, la droite PQ est l'inverse du cercle (γ). Or le point J a pour inverse le point A' tel que OJ.OA' = OB². L'angle \angle OBA' est droit et le point A' est diamétralement opposé au point O dans le cercle (Γ _a) circonscrit au triangle OBC. C'est donc le point fixe par lequel passe la droite PQ quand le point D parcourt la circonférence du cercle (Γ).

 Q_2 Le lieu du point T à l'intersection des cercles circonscrits aux triangles ABS et CDS est le cercle circonscrit au triangle BCB' où B' désigne le point diamétralement opposé au point O dans le cercle (Γ_b) circonscrit au triangle OAC.



De la question précédente, on déduit par un raisonnement identique que la droite QR polaire du point P par rapport au cercle (Γ) passe par le point fixe B' diamétralement opposé au point O dans le cercle (Γ _b) circonscrit au cercle OAC quand D parcourt la circonférence du cercle (Γ).

On désigne par (γ_1) et (γ_2) les cercles circonscrits aux triangles ABS et CDS et par T le deuxième point d'intersection de ces deux cercles autre que le point S.

La droite AB est l'axe radical des cercles (Γ) et (γ_1).

La droite CD est l'axe radical des cercles (Γ) et (γ_2).

Le point Q à l'intersection des droites AB et CD est donc le centre radical des trois cercles (Γ) , (γ_1) et (γ_2) . La droite QSR est l'axe radical des cercles (γ_1) et (γ_2) et le point T est donc sur la droite QR.

Par ailleurs, l'angle \angle OCB' étant droit, la droite B'C est tangente au cercle (Γ) et on a la relation d'angles: \angle CBD = \angle DCB'.

D'où $\angle BCB' = \angle BCD + \angle DCB' = \angle BCD + \angle CBD$

Soit encore $\angle BCB' = 180^{\circ} - \angle BDC = \angle BAC = 180^{\circ} - \angle BTS$.

Il en résulte que les quatre points B,C,B' et T sont cocycliques.

Quand le point D parcourt la circonférence du cercle (Γ), le lieu du point T est donc le cercle circonscrit au triangle BCB'.