Pr. Cabri 803

Enunciado

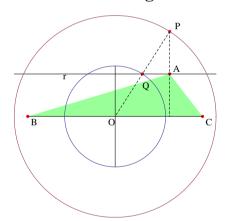
Construir el triángulo cuyos datos son: a, ha, b + c.

Propuesto por Julián Santamaría Tobar profesor de Dibujo del IES La Serna de Fuenlabrada.

Solución por César Beade Franco

Suponemos construído el lado BC. El vértice A ha de estar sobre una paralela a BC a distancia ha y también sobre una elipse de focos B y C y eje mayor b+c.

Veamos una construcción euclídea.


Dibujamos BC y una paralela r a la misma a distancia ha.

Con centro en O, punto medio de BC, trazamos dos circunferencias, α de radio p= $\frac{b+c}{2}$

y
$$\beta$$
 de radio $q = \sqrt{p^2 - \left(\frac{a}{2}\right)^2}$.

La circunferencia β corta a r en Q y la α en P a la recta OQ.

La perpendicular a BC desde P y r se cortan en A, punto que pertenece a la elipse citada(*). Este punto es el tercer vértice del triángulo.

(*) En la solución de J. Santamaría del problema 801 se da una demostración de este hecho. He aquí otra explicación.

Tomamos O como origen y BC como eje OX. Para un determinado ángulo t, el punto P (pCost, pSent) pertenece a la circunferencia α y Q (pCost, pSent) pertenece a β , estando alineados O, P y Q. Entonces r y la perpendicular a OX desde P se cortan en A (pCost, qSent) que pertenece a la elipse de focos B,C y semiejes p y q.