Pr. Cabri 804

Enunciado

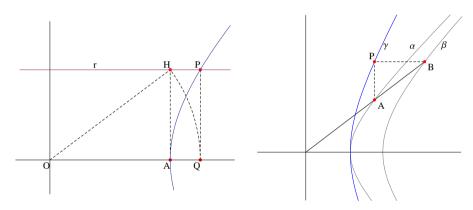
Construir el triángulo cuyos datos son: a, ha, b - c.

Propuesto por Julián Santamaría Tobar profesor de Dibujo del IES La Serna de Fuenlabrada.

Solución por César Beade Franco

Suponemos construído el lado BC. El vértice A ha de estar sobre una paralela a BC a distancia ha y también sobre una hipérbola de focos B y C y eje mayor b-c (podemos suponer b>c).

Para obtener una construcción euclídea observemos los siguientes dibujos.



En el de la izquierda calculamos punto de corte de una hipérbola equilátera con una paralela a su eje horizontal.

Si sus ecuaciones respectivas son $x^2-y^2=a^2$ e y=h, su punto de corte (uno de ellos) será P ($\sqrt{a^2+h^2}$, h). Si OA = a y OH = h, entonces OQ = $\sqrt{a^2+h^2}$.

En el derecho, α y β son las hipérbolas equiláteras de ecuaciones paramétricas (aCosh(t), aSenh(t)) y (bCosh(t), bSenh(t)) respectivamente. Por lo que (aCosh(t), bSenh(t)) será la ecuación de γ (*).

No está demás destacar que podemos obtener α aplicándole a β una homotecia de centro O y razón $\frac{a}{h}$.

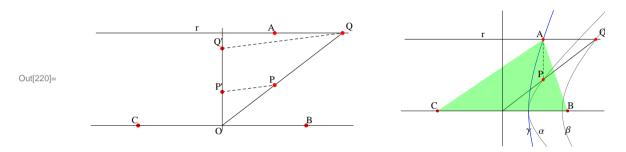
Pasamos a la construcción del triángulo.

Dibujamos BC y una paralela r a la misma a distancia ha. La hipérbola con la que se ha de cortar tiene centro en O, punto medio de BC y semiejes $p=\frac{b-c}{2}$ (horizontal) y

$$q = \sqrt{\left(\frac{a}{2}\right)^2 - p^2} \ .$$

Para ello intersecamos r con la hipérbota equilátera $x^2 - y^2 = q^2$, tal como vimos anteriormente, obteniendo el punto Q.

Con una homotecia de razón $\frac{p}{q}$, aplicada al punto Q obtenemos P. La parte izquierda del siguiente dibujo muestra como hacerlo. OQ' mide q y OP', p. Así que OP = $\frac{p}{q}$ OQ.



El vértice A buscado tiene la abscisa de P y la ordenada de Q.

(*) En forma implícita estas ecuaciones serán $x^2 - y^2 = a^2$, $x^2 - y^2 = b^2$, $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Aquí las hipérbolas equiláteras juegan el mismo papel que las circunferencias en la solución del problema 803.