Problema 805

Si la recta de Euler es paralela al lado \overline{BC} del triángulo $\stackrel{\triangle}{ABC}$, los ángulos B y C satisfacen que $tgB \cdot tgC = 3$.

Coxeter, H.S.M. (1961, 1969): Introduction to Geometry. Second Edition, (pag 18)

Solución de Ricard Peiró:

La recta de Euler pasa por el baricentro G, el ortocentro H y el circuncentro O. El baricentro está entre el ortocentro y el circuncentro y a doble distancia del ortocentro que del circuncentro.

recta d'Euler

Sea AH la altura sobre la base $\overline{\mathrm{BC}}$ que corta la base en el punto D.

Por ser la recta de Euler paralela al lado $\overline{\rm BC}\,$ AH es perpendicular a la recta de Euler.

Sea M el punto medio del lado BC.

Por la propiedad del baricentro

$$\overline{AG} = 2 \cdot \overline{GM}$$
.

Sea K el punto medio del

segmento \overline{AG} .

Sea L el punto medio del segmento \overline{HG} .

KL es paralela media del triángulo $\stackrel{\scriptscriptstyle \Delta}{\mathsf{AHG}}$.

$$\overline{KL} = \frac{1}{2} \overline{AH}.$$

Sea P la proyección de K sobre la altura AD.

$$\overline{AK} = \overline{KG} = \overline{GM}$$
.

Entonces,
$$\overline{AP} = \overline{PH} = \overline{PD}$$
.

Sea
$$x = \overline{BD}$$
. Sea $\overline{HD} = y$

$$\angle$$
HBC = 90°-C , \angle BHD = C .

$$tgB = \frac{\overline{AD}}{\overline{BD}} = \frac{3y}{x} \ .$$

$$tgC = \frac{\overline{BD}}{\overline{HD}} = \frac{x}{v}.$$

$$tgB \cdot tgC = \frac{3y}{x} \frac{x}{y} = 3.$$

