Quincena del 14 al 28 de febrero de 2017.

Problema 806

Sean un triángulo ABC con AB> AC, la recta (Δ) tangente en A a su círculo circunscrito, I el centro del círculo inscrito y J el centro del excírculo en el sector BAC.

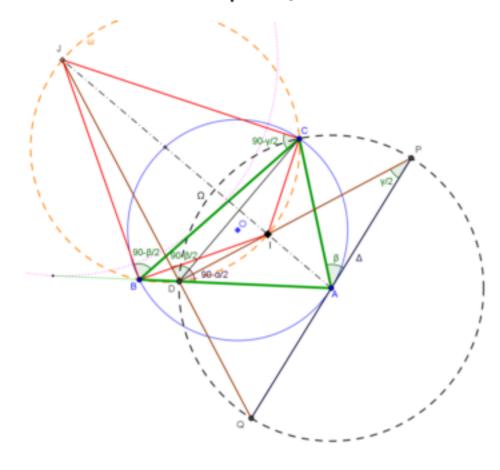
Sea el punto D dentro del lado AB tal que AD = AC.

Las rectas DI y DJ encuentran la recta (Δ) a los puntos P y Q.

Demostrar que A es el medio de PQ.

Fondanaiche, P. (2017) Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



La demostración se realizará en dos etapas:

1. DI y DJ son perpendiculares.

Como CJ y BJ son bisectrices exteriores del triángulo ABC, el cuadrilátero CJBI es cíclico, inscrito en la circunferencia ω .

Los ángulos de
$$\Delta JBC$$
 son $\angle JBC = 90 - \frac{\beta}{2}$, $\angle BCJ = 90 - \frac{\gamma}{2}$ y $\angle BJC = 90 - \frac{\alpha}{2}$.

La circunferencia ω también contiene al punto D como vamos a ver.

La bisectriz de A es mediatriz del segmento CD, por tanto el triángulo JCD es isósceles. Vamos a calcular los ángulos de la base.

Para calcular el ángulo $\angle JDC$, como AC = AD, $\angle CDA = 90 - \frac{\alpha}{2}$

tenemos que

. De aquí deduzco que D está en

la circunferencia ω.

Ahora, $\angle CDI = \frac{\beta}{2} = \angle CBI$, por abarcar el mismo arco y con ello resulta que las rectas DJ y DI son perpendiculares como pretendíamos probar.

2. P y Q son puntos diametralmente opuestos de la circunferencia Ω de centro A y radio AC.

El triángulo ADP es isósceles, pues el ángulo $\angle PDA = \angle CDA - \angle CDI = \frac{\gamma}{2}$ y el ángulo $\angle PAD = 180 - \gamma$ implican que $\angle DPA = \frac{\gamma}{2}$ y, en consecuencia, AP = AD y P yace sobre la circunferencia Ω de centro A y radio AC. Un recuento de ángulos en el triángulo ADQ nos da que $\angle DAQ = \gamma$, $\angle ADQ = \angle PDQ - \angle PDA = 90 - \frac{\gamma}{2}$, de donde concluimos que $\angle DQA = 90 - \frac{\gamma}{2}$, es decir, el triángulo ADQ también es isósceles: AD = AQ, o sea, también Q está en Ω . De $DP \perp DQ$, concluimos que $P \neq Q$ son diametralmente opuestos.