Problema 808

Resolver un triángulo $\stackrel{\vartriangle}{\mathsf{ABC}}$ conocidos r (radio de la circunferencia inscrita(, $\mathsf{r_a}$ (radio de la circunferencia exinscrita relativo al vértice A y b-c. Santamaría, J. (2017): Comunicación personal.

Solución de Ricard Peiró:

Sea T el punto de tangencia de la circunferencia inscrita y el lado AB. Sea R el punto de tangencia de la circunferencia exinscrita y la prolongación del lado $\overline{\mathsf{AB}}$.

Sea
$$p = \frac{a+b+c}{2}$$
.

Sea d=b-c.

$$\overline{BT}=p-b=\frac{a-d}{2}\;,\;BT'=p-c=\frac{a+d}{2}\;.$$

$$\overline{AT} = p - a, \overline{AT} = p$$

Los triángulos $\stackrel{\Delta}{\mathrm{BT}}$, $I_{\mathrm{a}}\stackrel{\Delta}{\mathrm{T'B}}$ son semejantes.

Aplicando el teorema de Tales:

$$\frac{r}{\overline{BT}} = \frac{\overline{BT'}}{r_a}.$$

$$\frac{2r}{a-d} = \frac{a+d}{2r_a}.$$

$$a^2 = 4r \cdot r_a + d^2.$$

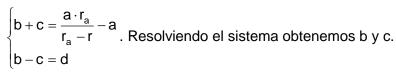
$$a = \sqrt{4r \cdot r_a + d^2} \ .$$

Los triángulos \overrightarrow{ATI} , \overrightarrow{ATI}_a son semejantes.

Aplicando el teorema de Tales:

$$\frac{\frac{r}{AT} = \frac{r_a}{AT}}{\frac{r}{p-a}} = \frac{r_a}{p}.$$

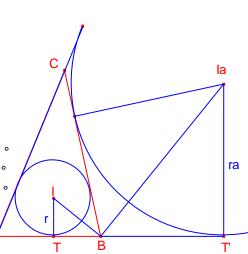
$$2p = a+b+c = \frac{a\cdot r_a}{r_a-r} \; .$$

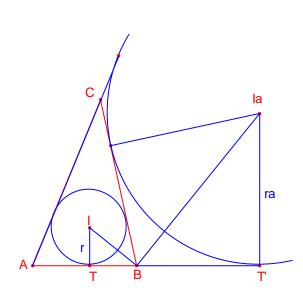


Si
$$r = 1$$
, $r_a = 4$ y $b - c = 2$:
 $a = 4,47$ cm
 $b = 4,73$ cm
 $c = 2,73$ cm
 $c = 2,73$ cm

$$a = 4,47 \text{ cm}$$

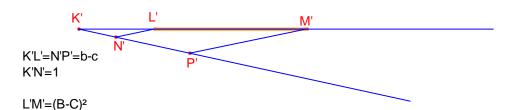
 $b = 4,73 \text{ cm}$



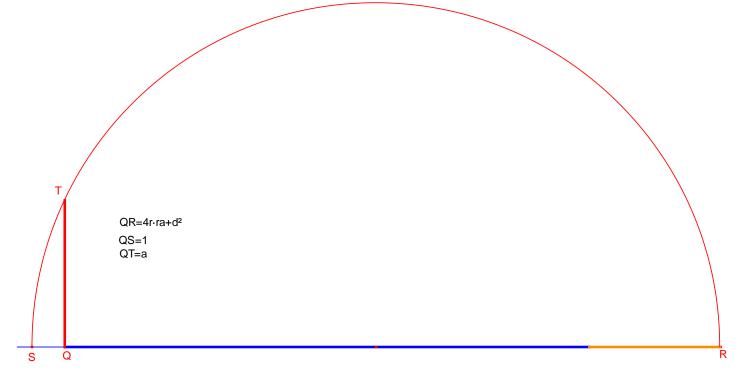


1.- Construir 4r · r_a

2.- Construir $d^2 = (b - c)^2$.



3. Construir $a = \sqrt{4r \cdot r_a + d^2}$.



4.- Dibujar
$$\overline{BT} = p - b = \frac{a - d}{2}$$
.

- 5.- Dibujar la circunferencia inscrita de centro I y radio $\overline{\Pi}=r$.
- 6.- Dibujar la recta que pasa per B y tangente a la circunferencia inscrita.
- 7.- Dibujar $\overline{BC} = a$.
- 8.- Dibujar la recta que pasa per C y tangente a la circunferencia inscrita.
- 9. Dibujar la intersección A de la recta tangente anterior y la recta BT.
- 10.- Dibujar el triángulo