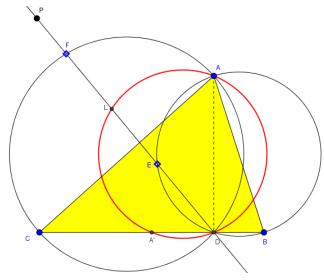
Problema 811.-

Sea un triángulo ABC. D es el pie de la altura de A sobre BC. Cualquier recta (Δ) que pase por D corta el círculo circunscrito ABD en el segundo punto E y el círculo circunscrito ACD en el segundo punto F. Determinar el lugar del punto medio de EF cuando (Δ) pivota alrededor de D.

Fondanaiche, P. (2017) Comunicación personal.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Respuesta: El lugar del punto medio de EF cuando (Δ) pivota alrededor de D es la circunferencia que circunscribe al triángulo rectángulo ADA', siendo A', punto medio de BC. Observamos este hecho a



partir de la pertenencia a dicho lugar de los vértices del propio triángulo ADA'.

Estableciendo el siguiente sistema de coordenadas $\{EjeOX=BC, EjeOY=AD, F=(0,0)\}$. En este sistema, los vértices de nuestro triángulo serán $B(m,0), A(0,1), C=(-n,0), siendo\ m,n>0$. Por tanto, la circunferencia C_1 que circunscribe al triángulo rectángulo ABD tendrá de ecuación:

$$C_1 \equiv \left(x - \frac{m}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{m^2 + 1}{4}$$

Asimismo, la circunferencia C_2 que circunscribe al triángulo rectángulo ACD tendrá de ecuación:

$$C_2 \equiv \left(x + \frac{n}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{n^2 + 1}{4}$$

Una recta variable que pase por el origen de coordenadas D(0,0) tendrá de ecuación $y=ax,\ a\in R$. Hallamos entonces los puntos E y F, respectivamente:

$$E = \left(\frac{a+m}{1+a^2}, \frac{a(a+m)}{1+a^2}\right) \quad F = \left(\frac{a-n}{1+a^2}, \frac{a(a-n)}{1+a^2}\right)$$

Luego el punto medio L de EF tendrá de coordenadas,

$$L = (\frac{2a+m-n}{2(1+a^2)}, \frac{a(a+m)+a(a-n)}{2(1+a^2)})$$

Vamos a probar que este punto pertenece a la circunferencia C circunscrita al triángulo rectángulo ADA', siendo $A'(\frac{m-n}{2},0)$, punto medio de BC.

$$C \equiv \left(x - \frac{m - n}{4}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{\left(\frac{m - n}{2}\right)^2 + 1}{4}$$

Para ello, sustituimos en esta ecuación las coordenadas del punto L.

$$\left(\frac{2a+m-n}{2(1+a^2)} - \frac{m-n}{4}\right)^2 + \left(\frac{a(a+m)+a(a-n)}{2(1+a^2)} - \frac{1}{2}\right)^2 = \frac{1}{16}\left((m-n)^2 + 4\right)$$

En definitiva,

$$\left(\frac{2a+m-n}{2(1+a^2)} - \frac{m-n}{4}\right)^2 + \left(\frac{a(a+m) + a(a-n)}{2(1+a^2)} - \frac{1}{2}\right)^2 = \frac{\left(\frac{m-n}{2}\right)^2 + 1}{4}, \quad cqd \quad \blacksquare$$