Problema 813.-

Construir el triángulo cuyos datos son r_b , r_c y (b + c).

Santamaría, J (2017) Comunicación personal.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Sea la relación dada entre los radios, $\frac{r}{p-a} = \frac{r_a}{p}$, $siendo\ 2p = a+b+c$.

Por tanto, $\frac{r_a}{r} = \frac{p}{p-a}$ (I)

Por otro lado,
$$S[ABC] = \sqrt{r \, r_a r_b r_c} = r_a(p-a) \rightarrow r_b r_c = \frac{r_a(p-a)^2}{r} = p(p-a)$$
 (II)

De la igualdad (II), obtenemos:

$$4r_br_c = 2p(2p - 2a) \rightarrow 4r_br_c = (a + b + c)(-a + b + c)$$

$$(b+c)^2 - a^2 = 4r_b r_c \rightarrow a^2 = (b+c)^2 - 4r_b r_c$$
 (III)

De la igualdad (III), construimos el lado a=BC del triángulo rectángulo de hipotenusa, b+c y como otro cateto, la media geométrica de los segmentos $2r_b$ y $2r_c$.

A partir de aquí, conocido el lado a=BC ya resulta del todo trivial la construcción del triángulo ABC. Veámoslo cómo es posible, sin más que conocer los siguientes datos del mismo.

Del triángulo ABC conocemos de partida, los datos $r_b, r_c \ y \ (b+c)$. A partir de aquí, hemos construido el lado a. Por tanto, ya podemos conocer también 2p=a+b+c y los segmentos $p \ y \ p-a$. Así también podemos determinar los radios $r \ y \ r_a$.

Estos últimos datos hacen que podamos construir el triángulo ABC con los datos r, r_a y (b+c), como ya se hizo en el P_810.