Propuesto por Julián Santamaría Tobar

813) < b + c,
$$r_b$$
, r_c > Santamaría, J. (2017):Comunicación personal.

Solución de Luis Lopes, investigador, autor y editor de libros de problemas de matemáticas.

Notação:

 Ω - círculo circunscrito

O - centro de Ω

E - interseção da mediatriz de BC com Ω sobre a bissetriz externa de A

Seja b > c sem perda de generalidade.

As relações seguintes são conhecidas:

$$AH_{a} = h_{a} \frac{2 r_{b} r_{c}}{r_{b} + r_{c}}; H_{a}M_{a} = \frac{(b+c)(h_{a} - r_{c})}{2 r_{c}}$$

Sejam X_c e X_b as projeções de I_c e I_b na reta do lado < a >. Então M_a E é a base média do trapézio < $I_cX_cX_bI_b$ > e vale $(r_b+r_c)/2$. X_c X_b = (b+c).

Construção:

- 1) construir o retângulo AH_aM_aP. Traçar a reta m:=(M_a,P) e obter o ponto E.
- 2) construir a mediatriz (reta n) de AE e obter o ponto O (O=m\cap n).
- 3) traçar $\Omega:=(O,OA)$ e obter os pontos B e C na reta a:= (H_a,M_a) .