Problema 813

Construir el triángulo coneguts $\,r_{b}^{}$, $\,r_{c}^{}$, $\,b+c$.

 $\rm r_{\rm b}$, $\rm r_{\rm c}$ radios de les circumferencias exinscritas a los ángulos B y C.

Sandoamaría, J. (2017): Comunicación personal.

Solución:

Supondremos que $b \ge c$, entonces, $r_b \ge r_c$

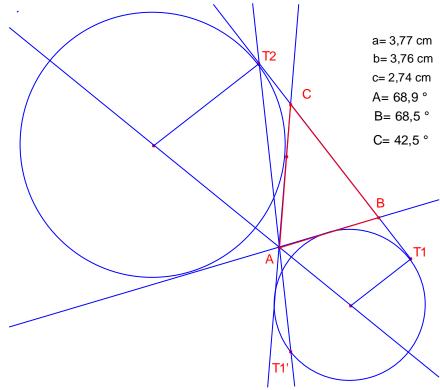
Sea T_1 punto de tangencia de la circunferencia exinscrita a el ángulo C y el lado \overline{BC} .

Sea T_2 punto de tangencia de la circunferencia exinscrita a el ángulo B y el lado \overline{BC} .

$$\overline{T_1T_2} = b + c$$
.

Proceso de construcción:

- 1.- Dibujar la semirecta $\overline{T_1T_1} = b + c$
- 2.- Dibujar la circunferencia tangente en $\,T_{1}\,$ a la semirecta, de radio $\,r_{c}\,$.
- 3.- Dibujar la circunferencia tangente en $\,{\rm T_2}\,$ a la semirecta, de radio $\,{\rm r_b}$.
- 4.- Dibujar la recta $\overline{I_b I_c}$.
- 5.- Dibujar la recta $\overline{T_1'T_2}$.
- 6.- La intersección de las rectas $\overline{I_bI_c}$, $\overline{T_1'T_2}$ es el vértice A.
- 7.- Dibujar las rectas tangentes interiores a las dos circunferencias que nos dan los lados del triángulo.
- 8.- Dibujar el triánguloABC .



Resolución analítica, para el caso $r_b = \frac{7}{2}$, $r_c = 2$, $b + c = \frac{13}{2}$.

$$\frac{r_b}{r_c} = \frac{a+b-c}{a-b+c} \; . \label{eq:rc}$$

Sea d = b - c.

$$\frac{7}{4} = \frac{a+d}{a-d}.$$

Aplicando el área del triángulo:

$$(p-c)r_c = \sqrt{p(p-a)(p-b)(p-c)} .$$

$$\frac{a+d}{2}2 = \sqrt{\frac{a+\frac{13}{2}}{2} - a + \frac{13}{2}} \frac{a+d}{2} \frac{a-d}{2} \ .$$

Consideramos el sistema:

$$\begin{cases} \frac{7}{4} = \frac{a+d}{a-d} \\ a+d = \frac{1}{4}\sqrt{-\left(a+\frac{13}{2}\right)\left(a-\frac{13}{2}\right)(a+d)(a-d)} \end{cases}$$
. Resolviendo el sistema:

$$\begin{cases} a = \frac{\sqrt{57}}{2} \\ d = \frac{3\sqrt{57}}{22} \end{cases}$$

Consideramos el sistema:

Consideramos el sistema:
$$\begin{cases} b+c=\frac{13}{2}\\ b-c=\frac{3\sqrt{57}}{22} \end{cases}. \text{ Resolviendo el sistema:} \\ b=\frac{143+3\sqrt{57}}{44} \\ c=\frac{143-3\sqrt{57}}{44} \end{cases}.$$