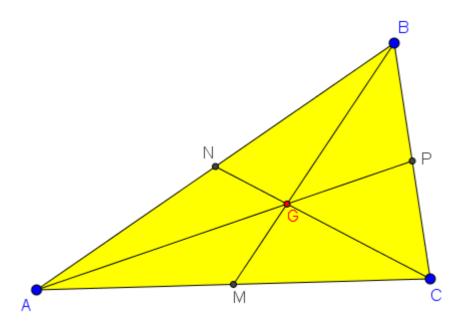
Problema 815.-

14.- Medianas multicolores

Érase una vez un triángulo ABC cuyas medianas BM y CN eran perpendiculares. Cada uno de sus tres lados era también el lado de un cuadrado exterior al triángulo. Estos cuadrados estaban coloreados respectivamente, de azul, rosa y amarillo, dependiendo de si su base era BC, CA o AB.


¿Cuántos cuadrados azules se necesitarán para obtener una superficie igual a la de los cuadrados rosa y amarillo juntos?

Tu turno:

Berrondo- Agrell, M. (2006): 100 enigmas de geometría (pag. 100)

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Suponiendo construido el triángulo en cuestión, deducimos las siguientes relaciones entre los valores de las respectivas medianas m_a , m_b y m_c .

$$\begin{cases} \frac{4}{9}m_b^2 + \frac{4}{9}m_c^2 = a^2 \\ \frac{4}{9}m_b^2 + \frac{1}{9}m_c^2 = \frac{c^2}{4} \\ \frac{1}{9}m_b^2 + \frac{4}{9}m_c^2 = \frac{b^2}{4} \end{cases} \qquad \begin{cases} \frac{4}{9}m_b^2 + \frac{4}{9}m_c^2 = a^2 \\ \frac{5}{9}m_b^2 + \frac{5}{9}m_c^2 = \frac{b^2+c^2}{4} \end{cases} \rightarrow \begin{cases} m_b^2 + m_c^2 = \frac{9}{4}a^2 \\ m_b^2 + m_c^2 = a^2 + \frac{b^2+c^2}{4} \end{cases} \rightarrow \end{cases}$$

$$\frac{9}{4}a^2 = a^2 + \frac{b^2 + c^2}{4} \rightarrow 5a^2 = b^2 + c^2$$

En definitiva, como $5a^2 = b^2 + c^2$, se necesitarán 5 cuadrados azules para obtener una superficie igual a la de los cuadrados rosa y amarillo juntos.