Problema n° 819

Sean un triangulo ABC y un punto cualquiera D de la circunferencia circunscrita a ABC.

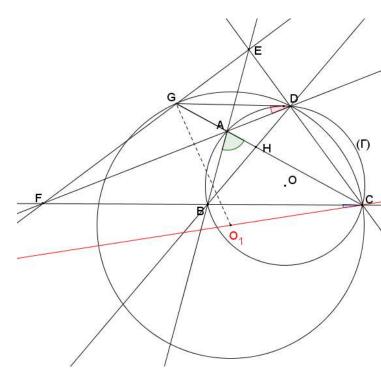
Las rectas AB y CD se cortan en un punto E.

Las rectas BC y AD se cortan en un punto F.

Las rectas EF y AC se cortan en un punto G.

Cuando D recorre la circunferencia circunscrita a ABC,hallar el lugar del centro del círculo circunscrito al triángulo CDG.

Solution proposée par Philippe Fondanaiche



Lemme: quand le point D parcourt le cercle (Γ) circonscrit à ABC, l'angle \angle ADG est constant.

Démonstration

Soit H le point d'intersection des droites AC et BD.Par construction la droite EF est la polaire du point H par rapport au cercle (Γ) et les quatre points G,H,A et C forment une division harmonique. On a donc GA/GC = HA/HC.

Or d'après la loi des sinus dans les triangles GAD,GCD,HAD et HCD, on a respectivement:

 $GA/GD = \sin(\angle ADG) / \sin(\angle GAD) = \sin(\angle ADG) / \sin(\angle CAD)$

 $GC/GD = \sin(\angle CDG) / \sin(\angle DCG) = \sin(\angle ADG + \angle ADC) / \sin(\angle ACD)$

 $HA/HD = \sin(\angle ADB) / \sin(\angle CAD) = \sin(\angle ACB) / \sin(\angle CAD)$

 $HC/HD = \sin(\angle BDC) / \sin(\angle ACD) = \sin(\angle BAC) / \sin(\angle ACD)$

D'où GA/GC = $\sin(\angle ADG)$. $\sin(\angle ACD) / \sin(\angle CAD)\sin(\angle ADG + \angle ADC)$

 $HA/HC = \sin(\angle ACB). \sin(\angle ACD) / \sin(\angle CAD)\sin(\angle BAC)$

Il en résulte que $\sin(\angle ADG)$. $\sin(\angle BAC) = \sin(\angle ACB)$. $\sin(\angle ADG + \angle ADC)$

Comme les angles \angle BAC, \angle ACB et \angle ADC = 180° – \angle ABC sont fixes,il en est de même de l'angle \angle **ADG**.

Soit O₁ le centre du cercle circonscrit au triangle CDG.

On a les relations d'angles $\angle CO_1 G = 2(180^\circ - \angle CDG)$ et $\angle BCO_1 + \angle ACB = 90^\circ - \angle CO_1 G/2$.

D'où $\angle BCO_1 = 90^\circ - \angle (180^\circ - \angle CDG) - \angle ACB = \angle CDG - \angle ACB - 90^\circ$

ou encore \angle BCO₁ = \angle ADG + 180° - \angle ABC - \angle ACB - 90° = \angle BAC + \angle ADG - 90° = cte

La droite O_1C faisant un angle constant avec la droite BC, le lieu de O_1 est la droite passant par C telle que $\angle (CB,CO_1) = \angle BAC + \angle ADG - 90^\circ$.